!‘.
|

Z80 SOFTWARE DEVELOPMENT SYSTEM

VERSION 2.1.

April, 1980

Copyright (c¢) 1980, EXIDY, Inc.

COPYRIGHT

Copyright (c) 1988 by Exidy Inc. All rights reserved. No part
of this publication may be reproduced, transmitted, trans-
cribed, stored in a retrieval system, or translated into any
lanquage, 1in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of Exidy 1Inc., 390 Java Drive,
Sunnyvale, California 94886.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Inc. makes no representations or warranties with respect
to the contents hereof and specifically disclaims any implied
warranties of merchantibility or fitness for any particular
purpose. Further, Exidy Inc. reserves the right to revise this
publication and to make changes from time to time in the con-
tent herof without obligation of Exidy Inc. to notify any per-
son of such revision or changes.

TRADEMARKS

EXLINK, EXASM and DEVCNVRT are trademarks of Exidy Inc. CP/M
is a registered trademark of Digital Research.

TABLE OF CONTENTS

PART I EXASM

1 INTRODUCTION S 6 8 2 5 B 4 4 4 8 4 4 B2 066 06 60 s 6 a4 a0l s el 01
2 DEFINITIONS L O R I I S S I R O S R R I N R R I A I I I I S T I N I I R O LR B B) 02

3 OPERATION ® @ = = 4 3 5 B P 4 2 46 A3 8 8B 4 AL A e YA 05
3.1 EXASM Call Format 4 5 0 8 4046 3 0080806006000 a00P000080ss006000n0 06
302 Call Options EEEEEREEEEEX

3.2.1 Cross reference only assembly0ctv0esese. 14

3.3 INCErTUPES .veisesesosososasosscnsosasssssancncconcsssee 14

€ 2 2 6 5 8 4 002 600 00220220000 12

4 SYNTAX ® B € % 0 5 0 % 2 0 6 P P G GO 4P B G 6 LS B E PG G EAEAEs 000020000 14

Source code fOrmat .s.ececeeevocnsssesasansaantacsoasaes 14
Delimiters eicicesaeseasnssceasonsonosacsassasesscssassa 14
Labels it ieesacensosaarosssssosaasaassssssosonssscnas 15
EXPressions ..eeecveancaesosnsasnsanasonsesnsessansecs 15
4.4.]1 CONSLANES .+ e s eoevesssacsassasasoscssessoscsasranas 15
EXpressions .ceceeesacscccciosrscsssassasonsssa 15
True and false «..ieeecesasnsosconossssoccssoes 17
Loglcal OperatorsS ..essesoccscossaasssasseness 17

S
»
W

AP ¥

Memory addresSsSes ...ccevesossacsccascsasccsss 18

L T I I I T I R I I R O O R R R I R I I S R A R R A S S A S R I Y 18

P =
.
[o WV, }

O-Ops @ 6 6 ¢ 5 5 E P 6 8 6 6 P 40 405 000 S 6L LD IO PP EEDE G eEasoa 18

Data Generation (DEFB/DEFM/DEFW/DEFS) .vevees. 18
Source Control (IF/ENDIF/INCLUDE) +seseceses. 22
Object Control (PSECT/ORG/END/NAME) .seaeevass 23
Listing Control (TITLE/EJECT/PAGE/LIST/NLIST) 24

4.6.4.]1 LIST and NLIST with Operands......... 24
4.6.5 Symbol Control (EQU/DEFL/GLOBAL/INT/EXT) 26
4,6.6 Linking Control (GLOBAL/INTERNAL/EXTERNAL.... 27

[

e« o o WId»O »

. 0
SLWN=A0 UL S~ LN
.

1
]

PP LEYOSED>ESS
o 3= W« e W 1}
L]

S LISTING secsesesocosacatacsosstsssossacaasnsssssossassnscacans 28

S.]1 FOrmat . ..seeceesccsscsosaasssssssssasoassnessassasneses 28
5.2 Error Messages/Warningseecesacsseceassnanescssss 28
5!2.1 ABORT 4 ¢ & & 2 3 2 P P P 4 8 B s ST % S P L e 0 s Al e aa 28
5¢2.2 MESSAGE vt vsveotcevarnnesssssasansaasssennas 29
5.2.2.,]1 Error Messagesccovt00css0s00esse 30
5¢242.2 Warning Messages «eccsssacescassesesas 31

5.3 Example LiSting ..cecesvoeriesrssssscsccsssssassensoassas 36
6 CUSTOMIZING EXASM .. cciivennssoacsannsoassnasansacassnnesass 40

6.1 Default Optionsceeceecaooonsoensossscssassssesens 37
6.1.1 Default Control Options (location 103) cesenae 37
6.1.2 Default List Control Options (locaction 104) .. 38
6.1.3 Page Length (location 105) ..uiicecececsassnasas 39
6.1.4 Line Length (location 106) .ueiesssseasansesnss 39

7 280 MACHINE INSTRUCTIONS t.uceessosencsonssanosssssssasss 40

PART II EXLINK

8 INTRODUCTION o eeeevonsscncacsansccnsse

9 OPERATION

9.1

9.3

P

e« » M o o o
= R O N R] B

OWVWOWWWWWOwOLYMm

re o

3 . -

0O o
HwWwhr—=IT WD —2Z

M .

® 6 @ 4 6 666006060 6480 00400tV

fal

Lo P
o
Lo >
L2 0 T
Mode Options .eseseveoseas
A=XXXX [SSSS] eeceacaennn
E[D:])[<filename>][.COM] .

TOO..‘...II.CICD....'..‘

10 SAMPLE RUNS 8 0 4 0 2 0 006 02 4000t es a0

10.1 Batch Mode Linking Example......
10.2 Interactive Mode Example...c.e..

11 ERROR MESSAGES «civececsccenesoscasncs

Interactive Mode Commands

Features of EXLINK ...o..%

3

12 EXAMPLE OF THE COMPLETE EXASM AND EXLINK.

PART II1 DEVCNVRT

13 INTRODUCTION

14 CONVERTING A FILE FROM CASSETTE TO DISK

15 EXAMPLE RUN

16 ERROR

APPENDIX

APPENDIX

APPENDIX

MESSAGES

A:

4 & 6 5 0660 00 0648000200000 e

EXASM Abstract Reference

B: EXLINK Abstract Reference

c:

DEVCNVRT Abstract Reference

@ & 8 6.6 000 2008 40000080 0aa0E b0

® e 00 200

42
44

44
44
45
45
45
46
46
46
47
47

48

48
51

52

54

58

58

59

60

61

63

63

PART I: EXASM

l. INTRODUCTION

EXASM (TM) and EXLINK (TM) together provide a means of trans~-
forming a Z80 assembly language program into an executable CP/M
(TM) command program.

EXASM 1s a 280 relocating assembler that recognizes standard
Zilog 280 mnemonics, and a useful set of pseudo-ops. It sup-
ports global symbols and assembles either relocatable or abso-
lute modules., EXASM transforms the Z80 assembly language
source program 1into an Intel hex format object (.0BJ) file,
producing also, optionally a listing (print file).

EXLINK is a relocating linking loader which loads object files
into specified memory locations and then optionally saves then
as command programs onto CP/M disks.

It is not the intention of this manual to teach assembly langu~
age programming, rather to explain the use of the assembler and
linking loader. Zilog's publication, Z80 Assembly Language
Programming Manual, . is an excellent reference, while the
Osborne & Associates book, 280 Assembly Language Programming,
is good for learning the language.

NOTE

In all examples, underlines indicate operator imput, and
a carriage return 1is assumed at the end of each command

line. As an example, here 1s how to transfer control
from the A drive to the B drive. After getting the A>
prompt, the operator types B: and a carriage return.

CP/M responds with the B> prompt. 1In this case, typing
B: (and the carriage return) is the only operator input.

A>B:
B>

2

DEFINITIONS

Some terms must be defined to use EXASM properly.

MODULE

A unit of code produced by an editor, loader or assem-
bler. Another word for a program or program section.

SOURCE MODULE (usual file type = .ASM)

A source module 1s an ASCII text file composed of
assembly language instructions~--labels, op codes,
mnemonics, operands, comments, etc. Source modules are
created by editor programs, such as CP/M's ED, Exidy's
EDIT or Exidy's Word Processor ROM PAC (TM). The
assembler assembles the file 1into one object module.
Lines are delimited by carriage return (0ODH) or by
carriage return/line feed (ODH, OAH). €EXASM supports
the tab character (09H) and 1Interprets it as a
delimiter. The end of a source module is defined by the
SUB or EOF character (l1AH). The maximum source line
length 1s the print line length minus 24; this is 108
characters as supplied by EXIDY (see 6.1.4 for print
line 1length). The source module 1is machine code
presented in a form readable by human beings.

OBJECT MODULE (usual file type = ,0BJ)

This is a module produced by the assembler from the
source module. Any object module contains machine code,
(if relocatable, linking information), address and
relocating information, and checksum information--all

‘coded in ASCII. It 1is wused by EXLINK. The format of

the object module 1s an extended form of Intel hex
format.

LOAD MODULE {(usual file type = .COM)

A load module 1is a file consisting of the memory image
of machine <code for one <complete program, created by
EXLINK from one or more object modules and built in RAM.
The file type 18 .COM, since it can be loaded and execu-
ted by using its name on the CP/M command line. Typing
the name of a .COM file (without its file type) loads
the program directly 1into the area beginning at 100H
(CP/M's TPA--transient program area) and executes it.
For this reason, EXLINK is used to relocate most object
files to location 100H.

3
SYMBOL

A symbol 1s an 1dentifier of up to six characters (for
more on this, see 4.3, Labels) which represents an ad-
dress or constant, It may be defined by an EQU state-
ment or by use in the label field of a source statement,
or may be externally defined if declared in a GLOBAL
statement. The assembler constructs the symbol table
and the linker constructs the global symbol table. Sym-
bols may be local or global; if global, they may be ei-
ther external or internal.

LOCAL SYMBOL

A local symbol 1is one defined and referenced by one mod-
ule only, and 1is not accessible to other modules. No
record of any kind 1Is made in the object module of a
local symbol.

GLOBAL SYMBOL

A global symbol 1s one appearing in the operand field of
linkage control type pseudo-ops. This set of pseudo-ops
consists of GLOBAL, EXTERNAL, EXTERN, EXT, INTERNAL,
INTERN, INT and PUBLIC. A global symbol is given global
definition 1in a source module. Any global symbol in a
source module appears 1in the corresponding object
module. Once all object modules are loaded by EXLINK,
all references to the global symbols of outside modules
(or external symbols), are resolved, assuming there are
no programmer errors Iin global symbol use. A global
symbol is defined 1in one module and that definition is
made available to other modules; the linker subsequently
supplies the needed reference points.

INTERNAL GLOBAL SYMBOL

A symbol declared global (by the GLOBAL, INTERNAL,
INTERN, INT or PUBLIC pseudo-ops) whose definition is
found within the module is said to be an intermnal global
symbol for that module. 1Its value is made known to all
other modules loaded with it by EXLINK. When an object
module is loaded by EXLINK, the internal symbol value is
placed in EXLINK's global symbol table. These values
must be addresses, not constants. That is, internal
symbols are always relocated. The internal symbol has a
value relative ¢to the start of the module assigned by
the assembler. EXLINK relocates this to an abolute
address by adding the base address of the module within
the final linked load module.

EXTERNAL GLOBAL SYMBOL

A symbol, declared global (by the GLOBAL, EXTERNAL,
EXTERN or EXT pseudo-ops), which is not defined within a
module, is an &external global symbol with respect to
that module. When this object module is linked with the

module where the symbol is anrn internal global symbol (that 1is,
defined and declared global, the reference to the symbol 1is
resolved. An external global symbol may never appear 1in an
expression with operators or as the operand of an EQU pseudo-op
in a source 1line.

POSITION INDEPENDENT

A program written so 1t may be placed anywhere in memory
and still run properly without change 1is said to be
position 1independent. Relocating information 1is not
needed in the object module.

ABSOLUTE

An absolute program is one written without relocating
information in the object module. A program is declared
absolute by using the assembler pseudo-op PSECT ABS. An
absolute program may or may not be position independent.
Usually such a program can reside only in one area of
RAM.

RELOCATABLE

A relocatable program is one without a PSECT pseudo-op,
or one that has been declared relocatable with the PSECT
REL statement. The assembled object file contains the
object data which requires relocation if the intended
execution base address 1s not the ORG value. Object
address references are stored as values relative to the
ORG value, as shown 1In the assembler 1listing. A
relocatable program 1is usually position dependent,
though not necessarily.

LINKABLE

An object module <containing data about internal and
external global symbols 1is a linkable object module.
The loader uses this data to supply the absolute addres-
ses In order to connect external references to internal
symbols in modules. A linkable program may be either
absolute or relocatable and may or may not be position
independent.

TWO PASS ASSEMBLER

EXASM 1is a two pass assembler, that 1s, an assembler
that scans twice each source module it assembles. Each
scan 1s called a pass. During the first pass values for
each symbol are determined and placed in a symbol table.

During the second pass, the assembler uses the symbol
table created during the first pass to decode operand
expressions 1into machine code. While assembling each
line of source <code, the assembler counts with its pro-
gram counter each byte of object code produced. If no
starting value is assigned by the ORG pseudo-op, then
EXASM assigns a starting value of zero., The assembler
also optionally suppresses creation of the object module
and optionally produces a listing, with or without cross
references specified, during the second pass. A linked
list within the object data 1is created in the second
pass for each external global symbol reference 1in the
module, and a dictionary of global symbols is written to
the object file. Diagnostic error messages are produced
at all times in the second pass.

EXASM recognizes the standard Zilog Z80 mnemonics and a
number of pseudo-ops (assembler directives). Assembly
source modules are usually stored on disk under the file
type .ASM. You may use EXASM to assemble files having
other file types, so long as these have the same format
as an .ASM file. (You could, for example, assemble di-
rectly a file created by Exidy's Word Processor ROM PAC,
without the necessity of changing 1its file type from
.WPF to .ASM.) EXASM assembles any file having the
proper format (written, that is, in Z80 assembly langu-
age) into an object file. It also optiomally suppresses
or outputs an assembly 1listing (a print file) on the
user's printer or on a CP/M disk. The object output of °
the assembler is a file in ASCII hexidecimal format with
file type (if not otherwise specified) .0BJ, as:

FILENAME.OBJ

where FILENAME 1is the same name as that of the .ASM
file. (The name of the file may optionally be specified
to be different from that of the source file, as you
will see later in the examples.)

280 source code 1input to EXASM is assumed to be a CP/M
disk file generated by a CP/M text editor or by Exidy's
Word Processor ROM PAC and disk interface.

OPERATION

EXASM programs are used on a single or dual disk drive,
as Exidy's Display Disk System or Floppy Disk Subsystem.

After connecting the disk drive, do the following:

Turn on the Sorcerer and all peripheral devices, inclu-
ding the disk drive unit,

Boot the CP/M system diskette, See the Exidy publica-
tions EXIDY CP/M and Display Disk Unit Operation Manual
or Floppy Disk Subsystem Operation Manual.

Insert a CP/M system diskette containing the EXASM
program and the file to be assembled into the disk drive
and type the command listed in the next section for both
EXASM and the file to be assembled existfing on the same
disk. EXASM and the file to be assembled may be on dif-
ferent disks. Examples are given in the next section.
If EXASM 1s on the B drive and you wish to assemble your
file on the B drive, you can get into the B drive, after
logging onto the A drive, by typing:

ADE.
B>

3.1 EXASM Call Format

ADEXASM <sourcefiled>[,<objectfiled][,<printfiled] [/<options>]

{sourcefiled>, <objectfile> and <printfile> may each have these
properties: The name of the file may be any valid file nanme,
up to eight characters, plus optional file type of up to three
characters (and separated from the file name by a period). If
no file type 1s specified, the type defaults to .ASM for the
source, .0BJ for the object, and .PRN for the print file. If
no file names are specified for <objectfile)> and <printfiled>,
thelr names default to the same as <sourcefile>. The file name
may be preceded by a drive identifier (any valid CP/M drive,
such as A: or B:). If no drive is specified, EXASM defaults to
the drive currently logged on. <sourcefile)> is assumed to be
located on the currently logged drive, unless otherwise
specified (by preceding the name with a valid CP/M drive). If
you specify only the drive name for <objectfile> or
{printfiled>, the output is directed to the specified drive.
(Do this only if output 1s to go to other than the drive
currently logged on.)

Delimiters should be used as shown. That 1is EXASM must Dbe
followed by at least one space, and, if <objectfile> and
{printfile)> are specified, items should be separated by commas.
If <printfile> is specified but <objectfile> is not, two commas
must be placed after <sourcefile).

Options are specified by the use of a slash (/) followed by -a
string of characteis consisting of one or more options.
Options are not separated by delimiters. OQOptions are explained
in the next section.

In each of the following examples, In response to the prompt of
the currently logged disk you type a command line following the
prompt. So, if the A drive is currently "up” and you wish to
assemble MYFIL.ASM:

Example:

Before assembly, this 1s what you have on the disk in the

A drive:
A> DIR
A: EXCOPY COM
A: EXASM CoOM
A: EXLINK CoM
A: MYFIL ASM

Now, use EXASM.

A>EXASM MYFIL

EXASM searches the directory of the disk in the A drive
for a file named MYFIL.ASM and 1if 1t does not find the
file, 1t outputs the message SRC INPUT FILE NOT FOUND.
EXASM is interested only 1in MYFIL.ASM and pays attention
to no other MYFILs (MYFIL.HEX or MYFIL.COM, for instance,
or even MYFIL with no file type). Before beginning assem-
bly, EXASM always signs on, thus:

EXIDY Z80 Assembler - version x.x
Copyright (C) 19xx by EXIDY INC

If MYFIL.ASM exists and is an error-free Z80 program, this
is what you see on the screen after the assembly 1is com-
plete and following the sign-on message:

PASS 2

ERRORS=0000

WARNINGS=0000

We will give examples later of error and warning conditions.

Look at the directory (with the CP/M DIR command), and you
find that two new files have been produced on the A disk:

A> DIR

A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL ASM
A: MYFIL 0BJ
A: MYFIL PRN

Note that if MYFIL.OBJ or MYFIL.PRN exist before the EXASM run,
EXASM deletes them and creates new versions.

Example:

A> EXASM MYFIL.ASM

If MYFIL.ASM &exists on the A drive, then the results are
precisely the same as those of the previous example.

Examples:

A> EXASM B:MYFIL

or

A> EXASM B:MYFIL.ASM

If MYFIL exists on the B drive, then it is assembled as
before, producing these two new files on the A drive:

A: MYFIL 0BJ
A: MYFIL PRN

Examples:

B>EXASM MYFIL

or

B>EXASM MYFIL.ASM

EXASM searches the directory of the B drive for MYFIL.ASM
and, 1f it exists, assembles it, producing on the B drive
the object and print files.

B>DIR
B: EXCOPY COM
B: EXASM COM
B: EXLINK COM
B: MYFIL ASM
B: MYFIL O0BJ

B: MYFIL PRN

Example:

A>DEXASM MYFIL.WPF

EXASM looks 1in the directory of the A drive for a file
named MYFIL.WPF and, if it exists, assembles 1t, producing
these object and print files:

A>DIR

A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL WPF
A: MYFIL 0BJ
A: MYFIL PRN

Example:

A> EXASM MYFIL,PROG1,PROG2

Assuming that MYFIL.ASM exists on the A drive, EXASM
assembles it, producing object and print files with the
specified names, and the default types.

A>DIR
A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL ASM
A: PROG1 0BJ
A: PROG2 PRN

Example:

A> EXASM MYFIL.WPF,PROG! .XXX,PROG2.YYY

Assuming that MYFIL.WPF exists on the A drive, EXASM
assembles it, producing object and print files with the
specified names and types,

A>DIR

A: EXCOPY COM
A: EXASM coM
A: EXLINK COM
A: MYFIL WPF
A: PROGI XXX

A: PROG2 YYY

Example:

A>EXASM B:MYFIL,PROGI

EXASM assembles
new files on

MYFIL.ASM from the B drive,

ged):

A>DIR B:
B: EXCOPY COoM
B: EXASM COoM
B: EXLINK COM
B: MYFIL ASM
A>DIR

: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: PROGI O0BJ
A: MYFIL PRN

Example:

ADEXASM B:MYFIL,,PROG2

10

producing two

the A drive (and leaving the B drive unchan-

EXASM assembles MYFIL.ASM from the B drive, producing:

A>DIR B:

B: EXCOPY COM

B: EXASM coM

B: EXLINK COM

B: MYFIL ASM

A>DIR

A: EXCOPY COM

A: EXASM COM

A: EXLINK COM

A: MYFIL OBJ

A: PROG2 PRN
The two commas indicate no file name specified for
{objectfile>, 8o the name defaults to that of <{source-
file>, with type .0BJ and assembled to the logged on disk,

A. A new file name
created as specified,

type.

1s given
with the

for <printfile>,
default to the

so 1t is
.PRN file

11

Example:

A> EXASM MYFIL,.XXX,.YYY

EXASM assembles MYFIL.ASM, producing object and print
files with the default names and specified types.

A>DIR
A: EXCOPY CcCOoM
A: EXASM COM
A: EXLINK COM
A: MYFIL ASM
A: MYFIL XXX
A: MYFIL YYY

Example:

You may wish ¢to assemble a file from one drive and send
the <objectfile> and <{printfiled> to another drive. Before
beginning EXASM, this 1is what you have on each disk:

A>DIR

A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL ASM
A>DDIR B

B: EXCOPY COM
B: EXASM COM

B: EXLINK COM

A>EXASM MYFIL,B:,B:

After the EXASM operation, this is what you have:

ADDIR

A: EXCOPY COM
A: EXASM COM
A: EXLINK coM
A: MYFIL ASM
A>DIR B:

B: EXCOPY COM
B: EXASM COM
B: EXLINK COM
B: MYFIL OBJ

B: MYFIL PRN

12

3.2 Command options

Options are specified with a slash (/) followed by a 1list of
single characters, according to the following table. Indivi-
dual options are not separated by delimiters. If they con-
flict, the last-named option takes precedence.

C - Generate cross-reference (explained later).

D - Listing to disk. This is a default option and need
not be specified wunless you have turned off the listing
option (bit 0) in location 103 (see Customizing EXASM).

E - "Ecology" or compressed listing--paper—-saving
option. Page ejects are not performed. Thus, the
pseudo-op EJECT 18 ignored, as is the form-feed normally
associated with TITLE and that generated at the end of
the listing.

F - Set form-feed option. This option is wused for
printers which «can handle an ASCII form-feed character.
Since this 1s a default, you need not use it unless you
have turned off this default in location 105 (see Custo-
mizing EXASM). The opposite of this option 1is option S.

G - Suppress generated text (beyond four bytes) of
DEFB/M/W. You can make this a default option (see
Customizing EXASM, where a full explanation of this
function is given).

K - No listing or cross reference. Suppression of print
file.

L - Listing to list device. Print file goes to the CP/M
LST: device, wusually a Sorcerer Centronics-compatible
parallel printer device.

N - No object output. Does not produce an object file.
This has no effect on listing or cross reference. This
is useful for a fast syntax check of source.

0 - Object output (default). Use 1if bit 2 of location
103 has been turned off (see Customizing EXASM).

S - No form feeds. Uses <carriage return/line feeds
instead. For printers that do not support form feed.
This can be made a default (see Customizing EXASM), but
is not supplied that way in the distributed version.

T - List to console, CP/M CON: device.

W - Don't print warnings. This too <can be made a
default.

Note that

13

diagnostic messages always go to the console 1f

listing 1s suppressed.

Examples:

produces

d>EXASM SOURCE

Source = d:SOURCE.ASM
Object = d:SOURCE.OBJ
Listing= d:SOURCE.PRN

where d=any valid CP/M drive.

Default options:

produces

Options:

produces

produces

Listing will have form feeds. Generated text and
warnings will be printed. oObject and listing (with
no cross reference) go to disk.

d>EXASM SOURCE,OBJECT,PRINT/SW

Source = d:SOURCE.ASM
Object = 4:0BJECT.OBJ
Listing= d:PRINT.PRN

S - Listing will have no form feeds.
W - Warnings will not be printed.

d>EXASM B:SOURCE.BAK,,PRINT.ECH/N

Source = B:SOURCE.BAK
Object = no object generated (N option)
Listing= B:PRINT.ECH

d>EXASM SOURCE,B:/LC

Source = d:SOURCE.ASM
Object = B:SOURCE.OBJ
Listing= to list device

Cross references will be included in listing.

14

For a quick syntax-check assembly use ‘the options /NK to pro-
duce no object or listing, but just output diagnostic messages
to the console.

3.2.1 Cross reference only assembly. The option string
/LKC causes the cross references to list on the printer.
/KC causes the <cross references (only) to write to the
specified disk file.

3.3 Interrupts

The operator may abort assembly with CONTROL C. This produces
the message:

***x* ABORT ERROR = Z, OPR REQUESTED ABORT ***kkikxkkskxkx

CONTROL S stops assembly (during Pass | or Pass 2) until anoth-
er character is struck. Use this with the T option to pause
console output, which otherwise prints too fast to read, or,
perhaps, to momentarily pause printer listing. (Be sure to
hold the key down until it is acknowledged.)

4 SYNTAX

An assembly language program or a source module {s made up of a
sequence of source lines comprised of delimiters), labels, op
codes, pseudo-ops, operands and comments Iin a sequence which
defines the user's program. There follows a discussion of the
syntax of the EXASM assembly language.

4.1 Source code format

The source code format requires the use of delimiters, to sepa-
rate labels, op codes, pseudo-ops and operands from each other.
The source code line format is:

[label] <op code> [<operand>] |[,operand] [;comment]

Where expressions within square brackets ([]) are optional,
while those within angle brackets (<>) must be supplied accor-
ding to the conventions of Z80 assembly language programming.

4.2 Delimiters

Delimiters are one or more ASCII commas or spaces used to sepa-—
rate labels, op codes, operands, and pseudo-ops from each
other. Carriage returns and semicolons are terminal delimi-
ters, that 1s, they terminate the source line to be parsed by
the assembler.

15

4.3 VLabels

One or more characters compose a label. However, the assembler
recognizes only the firast six characters of a label. Control
characters and the following ASCII characters cannot be used in
a label:

'()*+|-<>"/:;

Also, the first character of a label <cannot be a decimal num-
ber. All labels must begin in column 0 unless followed by a
colon (:). A label may be used on any line in the source mod-
ule (with the exception of ENDIF). The value assigned to the
label, 1if 1t 1s not before an EQU pseudo=-op, 1s that of the
current program counter.

4.4 Expressions

4.4.1 Constants. Constants must be 1in the range 0 through
OFFFFH. They may take these forms:

DECIMAL - (default); any number with no qualifier
is8 assumed by the assembler to be deci-
mal. Numbers may optionally be qualified
with a D. Examples: 34, 183D.

HEXADECIMAL - must begin with a number (0-9) and end
with H. If the first digit 1s a letter
(A-F), a leading zero is added. Exam-
ples: 20H, OALDH, OFFFAH.

OCTAL - must end with Q or 0. Examples: 327Q,
1770.

BINARY - must end with B. Example: 01101010B.

ASCIL - must be =enclosed i1in single quotes.

EXASM converts them to ASCII hex code.
Example: 'A' (= 41H).

4.4.2 Expressions. EXASM accepts many expressions 1in the
operand field of a statement. Expressions are evaluated from
left to right according to this hierarchy. (0 is the highest
in this hierarchy, that is, it has the tightest binding power.)

16

operation operator hierarchy
equal to = or .EQ. 0
signed less than < 0
signed greater than > 0
signed less than or equal to {(= or ={ 0
signed greater than or equal to >= or => 0
not equal >C¢ or <> or .NE. 0
unsigned less than .LT. 0
unsigned greater than «.GT. 0
unsigned less than or equal to .LE. 0
usigned greater than or equal to .GE. 0
reset overflow .RES. 0
unary plus + 1
unary minus (two's complement) - 1
logical NOT (one's complement) .NOT. {
multiplication * 2
division / 2
addition 3
subtraction - 3
logical AND <AND. 4
logical OR .OR. 4
logical XOR «XO0R. 4
logical shift right . SHR. 4
logical shift left . SHL. 4
modulus function (remainder) +MOD. 4

(Expressions within parentheses are evaluated first, so you may
use parentheses to change the order of expression evaluation.)

Examples:
In this expression:
3+2%4
first 2*4 is evaluated, then 1t 1s added to 3. 1If you
wish to change the order, so that first 3 1s added to 2,
and then the result multiplied by &4, wuse parentheses,

thus:

(3+2)*4

17

In this expression:
+NOT.X.AND.Y

First the expression .NOT. X 1s evaluated, and then that
is ANDed with Y. That 1s, the expression is evaluated as
if 1t were written:

(.NOT.X).AND.Y
In this expression:
A=B.OR.C=D
First the expressions A=B and C=D are evaluated, and then

the result of A=B is ORed with the result of C=D. That
is, the expression is evaluated as if it were written:

(A=B) .OR.(C=D)
In this expression:

.NOT.A<B.AND.A+4/B
First A<B is evaluated, then .NOT. A<B. fhen 4/B s
evaluated and this added to A. Then the first expression

is ANDed with the second. That 1s, the expression is
evaluated as 1f it were written:

(.NOT.(A<B)).AND.(A+(4/B))

4.4.3 True and false. For expression evaluation, the value of
true 1s 1, false, 0. (Note that the IF pseudo-op interprets
any non-—-zero value as true.)

4.4.4 Logical operators. .RES. wunconditionally resets any
overflow error 1n an operand expression. The shift operators
shift their first argument right or left by the number of bit
positions given {n the second argument. 2eros shift into
vacated bit positions. The negative (two's complement) of an
expression may be formed by preceding it with a minus sign.
The one's complement of an expression may be formed by
preceding it with the .NOT. operator.

4+4.5 §. The symbol § represents the value of the program
counter of the current instruction. In relative addressing,
the program counter must be subtracted from the label if a
branch 1s to be made to the label address.
Example:

JR LOOP-$§

jumps relative to label LOOP.

18

For a JR on <condition> or a DIJNZ the assembler 1issues an out
of range (R) werror 1if and only if the operand expresssion
evaluates to »>127 or <-128. This introduces the anomaly that
JR LOOP is legal as far as the assembler is <concerned 1if the
address of LOOP is <128. That 1is, 1f the address of ©LOOP 1is
at, say, 0, and at address 1000H is the instruction JR LOOP-§,
even though the jump exceeds 127 bytes, the assembler will not
catch the error. But, on execution, the program will not make
the jump to LOOP.

4.4.6 Memory addresses. Enclosing an expression completely in
parentheses 1indicates a memory address. In instructions such
as LD A,(nn), where nn 1s a literal address, an expression
consisting of symbols and operators may be used as the literal
address within the parentheses.

4.5 Op codes

That part of the source instruction that specifies the
operation to be performed on the operands is called the op
code., There are 74 op codes, 25 operand key words and 643
legitimate <combinations of op codes and operands in the 280
instruction set. The full set. of these op codes is summarized
in the Z80 CPU Technical Manual and fully described in the 2Z80
Assembly Language Programming Manual, referred to earlier.
Both are published by Zilog Publications, Zilog, Inc.,
Cupertino, California. (See Section 7 for a summary of the op
codes.)

4.6 Pseudo ops

Pseudo-ops do not generate machine instructions; 1instead, they
direct the assembler to do something. EXASM recognizes several
pseudo-ops which appear in the op <code field of a source
statement. Labels for these source lines are optional for all
pseudo-ops except two (EQU and DEFL). Pseudo-ops do nuot
necessarily generate object code, but can reserve bytes or can
cause certain values to be loaded 1into certain bytes.
Rowever, pseudo-ops always cause some action in the assembler.
The assembler recognizes these pseudo-ops:

4.6.1 Data Generation

DEFB/DEFM/DB - define the conteants of a byte or bytes located
at the current program counter address. DB, DEFB and DEFM are
synonymous. Here is the format:

<label> DEFB nf{,n,n...]

where n is an eight bit value that may be an expression, or a
string. DEFB will not generate more than 255 bytes of data.
If the value of the expression 1s greater than eight bits, that
is, >255 or <-128, a warning is flagged.

19

Example:
DEFB 3 ;generates byte of 3
CR EQU ODH ;jdefines CR
DEFB CR ;generates a byte of CR

;(defined as ODH)
Multiple operands may be used, separated by delimiters.

Example:
DEFB 'HI',233/2+4,'1''M HAL',168

Note the use of two apostrophes in "I'M." Two contiguous apos-
trophes embedded 1n a string expression generate the ASCII code
for one apostrophe. This convention is used because a single
apostrophe is construed by the assembler to be a string delim-
iter.

Example:

DEFB 1,,+52,,3,,4,,,5
1s the same as:

DEFB 1,2,3,4,5

which shows that multiple delimiters are accepted, although one
has the same effect.

HIMSG: DEFM 'HI!' ;plcks up message HI!
;and stores {t

As previously explained, 1f you want to put quotes 1into the
message, use the apostrophe key twice.

Example:
QUOTE: DEFM 'HE SAID ''HI!'"'
This produces: HE SAID 'HI!'
There 1s a simple short-hand way of defining multipl? blocks of
bytes using DB 1nstructions. These are called (“"reps,” for

repetitions of code) and are used within angle brackets. Sup-
pose you wished to define these bytes:

1,1,1,5,5,5,5,5,5,10,10,10,10

This is three 1's, six 5's and four 10's. You could do it this
way:

DEFB <3,1,>,6,5,>,<4,10,>

20

Note that the tralling comma must be present within each pair
of brackets. These may be nested up to five deep. A general
form for this multiple usage 1is:

<label)> DB <n,W,[<o0,X,>,][Kp,Y,[<q,2,>,]1>,1...>

where n, o, p and q are number of iterations and W, X, Y and 2
are numeric literals (any one of which could also be an alpha-
numeric literal 1if enclosed 1In apostrophes, as 'W' or 'X').
Notice that each iteration has a trailing comma which must be
present. A few assembled source statements (including three
that cause errors) show this use:

‘ EXIDY Z80 ASSEMBLER V x.x PAGE 1
ADDR OBJECT ST #

'0000 00000000 0007 DEFB <5,0,>
00
'000E 00484901 0008 DEFM <4,0,'"HI',<2,1,>,>
01004849
01010048
49010100
48490101
'0054 46524F47 0011 DB <3,'FROGS',<2,'TOADS',>,"'CICADA"',>
53544F41
4453544F
41445343
49434144
4146524 F
4753544F
41445354
4F414453
4349434
44414652
4F475354
4F414453
544F 4144
53434943
414441
'011A 0018 DEFB <257,0,>
LR R ERROR CODE = H, REP ERR T o sk v ok ve ke ok ok e A e ok ok e ok A ok %k vk Sk vk dk ok T ok ek ok de ok ok Kk de ok ke k ke ok ko
'0l1A 0019 DB <130,0,1>
* Kk Rk ERROR CODE = G, UNBALANCED REP ("(“)")") e v e de ok K ok de ok de W K vk ok vk v de e vk b ke ke ok Kk

'011A 0020 DEFM <1,<1,<1,<1,<1,<1,0,>,>,>,>,>,>
*%*** ERROR CODE = H, REP ERR *hidkdikdkddkdkhhkhhhkdhiiddddhhhhkthkhhtkx

The first statement, DEFB, produces in the object <code five
bytes of 0: 00 00 00 00 00.

The second statement, DEFM, produces four times the following:
one byte of zero followed by two bytes of "H” and "“1I" followed
each time by two bytes of 1, that is:

21

o,4,1,1,1,0,H4,1,1,1,0,H,1,1,1,0,H,I,1,1

The third statement, DB, produces three times the word "FROGS,"
followed each time by two "TOADS" and one "CICADA,"” thus:

FROGSTOADSTOADSCICADA
FROGSTOADSTOADSCICADA
FROGSTOADSTOADSCICADA

The first error is caused by trying to generate more than 255
bytes of code. The second by leaving off the trailing comma.
(If the comma were added, however, an H error would be caused
by again trying to generate more than 255 bytes of code.) The
last error is caused by nesting too deep.

Only the first four bytes of the object code are shown in the
assembly listing when you use the G option with DB/DEFB/DEFM.

DEFW - defines the contents of a two-byte word. The least
significant byte of the value nn is 1loaded at the progranm
counter address. The most significant byte 1s 1loaded at
program counter plus one. These two bytes together comprise
what is termed a "word,"” having this format:

<label> DEFW {expr>

where <expr> is a sixteen bit value or label.

PBFR DEFW BFR ;The least significant

;byte of the value of
;BFR is loaded into the
;byte pointed to by
s PBFR and the wmost
;significant byte 1is
;loaded into PBFR plus
;one.

DEFW supports multiple operands separated by single commas.

Example:
DEFW 1,SYM,XSYM,27+3/455,5YM=-12,"HI'

DEFS -~ defines a space of RAM without initalizing it with
values. This pseudo-op reserves <expr> bytes of mwmemory
starting at the current program counter value. Here is the

format:
<{label> DEFS {expr>

where <expr> 1s a sixteen bilt value or absolute expression. A
label wused 1in the operand field of a DEFS statement must be
defined before the DEFS statement appears.

BFR DEFS 200 e 200 bytes of

;reserve
istorage.

22

The DEFS nn statement is the same as an ORG $+nn statement,
where § 1s the value of the program counter. That 1is, these
two statements produce the same amount of space:

DEFS 100
and
ORG $+100
4.6.2 Source control
IF - defines conditional assembly. If the expression nn 1is
true (rnon-zero), the IF pseudo-op is ignored. 1If the
expression is false (zero) the assembly of subsequent

statements up to the matching ENDIF statement is disabled as if
it were not in the source module. The IF pseudo-~op cannot be
nested. Here is the format:

<label> IF nn

where nn is a sixteen bit value.

ENDIF - signals the end of a conditional assembly and reenables
assembly of subsequent statements. Here is the format:

ENDIF
Example:
NOASM EQU 0
1F NOASM
DEFM 'HI THERE'
ENDIF

As long as NOASM has value 0 (false), nothing from the IF
statement to the ENDIF statement assembles. That {s, in this
case, the DEFM statement is not assembled. If NOASM has a
value other than 0 (that is, it is true), then assembly does
not skip to the ENDIF statement, and statements after the IF
statement are assembled. So 1f the 0 in the EQU statement is
changed to a 1, then the DEFM statement is assembled.

INCLUDE - allows source statements from another input file to
be included within the body of the given program. If the
INCLUDE file cannot be properly opened, then assembly aborts.
The source module to be included must not end with an END
pseudo-op (because this would terminate assembly). The INCLUDE
pseudo~op may not be nested.

INCLUDE <filename[.<type>]>

where <filename> may be up to elght characters and <{type> may
be up to three letters. If not specified, <{type> defaults to
«ASM.

23

4.,6.3 Object control

PSECT - defines a program section as absolute or relocatable.
If used, this pseudo-op should appear before any source lines
can be assembled into object code and should appear only once
in any source module. If not included in a source module, the
module is assumed relocatable., It has the following format:

{label> PSECT <opr>

where <opr> is either ABS (for an absolute module) or REL (for
a relocatable module).

ORG - sets the program counter to the value specified., When
used 1in an absolute module before any source code is assembled
into an object code, ORG determines the starting address for
the program. In a relocatable program, ORG provides an offset
to the base address given when loaded. There may be more than
one ORG pseudo-op in a source module. 1If a source module does
not contain ORG pseudo-~ops, the program counter is set to zero
at the beginning of the assembly. It has the following format:

<{label)> ORG expr>

where <expr> 1is a sixteen bit value or expression which is Pass
1 defined.

{label> ORG 2004 ;this sets progranm
;jcounter to 200H

END - defines the last line of the program or module 1in the
following format:

{label> END

NAME ~ defines the name of the program (source and object).
The name is placed in the heading of the assembly 1listing and
in the first record of the object module. If a NAME pseudo-op
does not appear in the module it defaults to six blanks. As
with all symbols, NAME may be one to six characters in length.
Here is the format:

<label)> NAME <(string>

Here, up to six characters can define the name of the program.
If longer than six characters, them 1t 18 truncated to the
first six characters.

NAME MYPROG ;the title MYPROG is
;now placed in the
;assembly 1listing and
;in the first record of
;the object module.

24

4.6.4 Listing control

Listing control (assembler directives) are pseudo-ops modifying
the assembly 1listing format. They are not printed with the
assembly 1listing, but are assigned statement numbers. The
following assembler directives modify the assembly listing
format:

EJECT ~ causes a printer to eject a page of a lisfing.

TITLE - causes a printer to eject a page and prints a heading.
It has the following format:

TITLE s

where s 1s a string of ASCII characters whose length may not
exceed the default line length minus 53. (That is, a standard
132 character print line allows up to 79 characters in the
title.) Anything beyond that length causes this warning
message:

** WARNING CODE = H, TITLE TOO LONG ‘***k*xkkikxx
The string s need not be enclosed within quotes.

PAGE -~ causes the next page number in the heading to be set to
the value specified. It has the following format:

PAGE x
where x 18 a value of up to four decimal digits.
LIST - causes an assembly listing to begin,

NLIST - causes an assembly listing to stop wuntil the next LIST
directive is found (1f any).

LIST and NLIST allow optional activation and deactivation.
(See Customizing EXASM.)

4.,6.4.1 LIST and NLIST with operands. You may wuse optional
character strings as operands with LIST and NLIST. If you do
not use options, then NLIST causes the listing to suspend until
the next LIST {8 encountered. If you use the options, then
these two function slightly differently. Rather than stopping
the listing, NLIST causes option disable. Rather than resuming
listing, LIST causes option assertion. These options alter
listing. Options may be strung together. These are the
optiouns:

G - Don't print text.
W - Don't print warnings.

E - "Ecology"” (suppression of form feeds and ejects).

Examples:

LIST GW

25

NLIST GW

Example:

EXAMPL
ADDR OBJECT

'0000 49462054

'0025 54484953
2053484F
554C4420
4C495354
20544845
204F4&424A
45435420
454E5449
52454C59

0049 01

'004A 01
** WARNING CODE

ERRORS=0000

WARNINGS=0001

EXIDY 280 ASSEMBLER V 2.1 PAGE
ST # SOURCE STATEMENT

0001 NAME EXAMPL

0002 ;

0003 LIST G ;DO NOT LIST GENERATED TEXT
0004 DEFB 'IF THE OBJECT FOR THIS LISTS, TROUBLE'
0005 ;ONLY FIRST FOUR BYTES SHOULD
0006 ; LIST

0007 ;

0008 ;

0009 NLIST G ;LIST GENERATED TEXT

0010 DEFB 'THIS SHOULD LIST THE OBJECT ENTIRELY'
0011 ;ALL TEXT GENERATED SHOULD
0012 H LIST IN EXTRA LINES

0013 H

0014 LIST W ;DISABLE WARNINGS

0015 R

0016 DEFB 101H ;s SHOULD GIVE NO OVERFLOW WARNING
0017 ;

0018 NLIST W ;ENABLE WARNINGS

0019 ;

0020 DEFB 101lH ;SHOULD GIVE OVERFLOW WARNING
V, OVERFLOW de Jde kv ok Je sk A vk ok ok dkook ko %k ok de ok %k sk ok W s k% sk

0021 ;

0022 END

Here, the statement LIST G causes assertion of the option. The
option 1in this case is to not list generated text, so LIST G

cuts off text

after the fourth byte, as you can see by the

object code associated with statement 0004. With the statement
NLIST G, the option 1Is suppressed, and text 1s generated as
usual, as seen in the object code for statement 00lO0.

26

4.6.5 Symbol control

EQU ~ assigns a value to a label. The 1label cannot be defined
by an EQU pseudo-op or by appearing in the label field of
another source statement in the source module. If a global
symbol is defined by an EQU (as seen below), then the value of
the global symbol is relocated when 1linked even though it
appears as a constant in the EQU. Here is the format:

<label)> EQU {expr>
where <expr> 1is the value.
Example:

CONST EQU 7 ;The value of CONST is 7
Labels used in the operand field of an EQU statement must be

defined in previous source code. Thus, the following three
statements would not be permitted:

A EQU B
B EQU C
c EQU OFFFH

These, however, are valid:

c EQU OFFFH
B EQU c
A EQU B

DEFL ~ defines a label. It sets the value of a label to <expr>
and may be used repeatedly for the same label within a module.
DEFL is similar in function to EQU but can be multiply used for
a particular label. Here is the format:

<{label> DEFL <expr>
where <expr> 1s a sixteen bit value or expression.
Example:
CURNBR DEFL 0 ;the value of current #

;18 zero for this part
;of the assembly

CURNBR DEFL 1 ;the value 1is now one
;in this part of the
;assembly

27

4.6.6 Linking Control

The following pseudo-ops are used to declare a symbol's scope
as global and identify the symbol as intermnal or external. The
GLOBAL pseudo-op 18 the historical ancestor of the other
INT/EXT-type pseudo-ops.

The INT/EXT method of symbol reference gives the advantage of
error checking for external 1labels which are accidentally
locally defined. If also checks that internal names are
spelled correctly.

If a symbol is referenced in a module and 1is not defined in
that module, it must be an external symbol that can be found in
a global statement 1in another module. Conversely, 1f the
global symbol is defined in the module, then it {8 an -internal
symbol. Here is the format:

<{label> GLOBAL <symbol>
Example:

GLOBAL XSYM ;This declares XSYM
;global

In other assemblers, the GLOBAL pseudo-op is the only pseudo-op
used to specify both internal and external global symbols. It
may also be 80 used in EXASM. Whereas elsewhere no
differentiation can be made between global externals and
internals, here the INT/EXT pseudo-ops may be used in place of
GLOBAL.

These three mwmay be used in place of the GLOBAL pseudo-op to
specify an external global symbol:

EXTERNAL, EXTERN, EXT

These four may be used in place of the GLOBAL pseudo-op to
speclify an internal global symbol:

INTERNAL, INTERN, INT, PUBLIC
You may use any of the forms interchangeably.

The advantage of using these ops 1s that error checking 1is
performed. Here are examples, together with their associated
error messages:

EXT XSYM
**kk%x ERROR CODE = J, EXT LOCALLY DEFINED RAkkkkkkkdhkkhhkhkkk

INT ISYM
kxxk FERROR CODE = K, INT NOT DEFINED Akxkkhkhkkhhhkkhkhkhkhinx

28

5 LISTING
5.1 Format
Print file headings look like this:

{name) {ticle> EXIDY Z80 ASSEMBLER version xXx.x PAGE n
ADDR OBJECT ST # SOURCE STATEMENT

1. The first six characters are the name. They come from
the NAME statement.

2. Three blanks follow.

3., Then comes the TITLE (which must conform to TITLE
length limitations, described in 4.6.4).

4. Then follows the assembler message.
5. The last 1item on the first line is the page number.
This number is the current page count, unless changed by

the PAGE pseudo-op (4.6.4).

6. On the next 1line are the titles for address, object
code, statement number, and source statement.,

An apostrophe to the left of an address means that address is
relocatable. An apostrophe after the object code means it will
be relocated as needed by EXLINK. A trailing asterisk after
the object code signifies an external global reference.

See section 5.3 for example listing.

5.2 Error Messages

When an error occurs during assembly, it either causes an abort
error condition or generates an error message in the 1listing.
All error messages are designated by a single alpha character.
Assembler errors are one of the following types:

5.2.1 ABORT. An error stopping ¢the assembly of a program or
module. There are three abort errors. When either occurs,
control returns to CP/M with one of these messages output ¢to
the console:

**%*%*ABORT ERROR = Z, OPR REQUESTED ABORT **kkkikkdkhikkhkhikkiki

This occurs when the operator presses CONTROL C during
assembly.,

xx ABORT ERROR = F, SYMBOL TABLE FULL **%kkkkkhkhkhkhkhhkrkkhk

The symbol table is full, indicating more symbols have been
defined than the symbol table can accommodate.

29

**** ABORT ERROR = Y, SRC/PRN/OBJ FILES SAME *%kAkkkdkkhkkkkknkskk

The command specified the same name for two or more files. For
example, this command would cause the error:

A>DEXASM A.ASM,A.ASM

5.2.2 MESSAGE

An error or warning that does not stop the assembly of a prog-
ram or module produces a message that prints in the listing
(print file) 1inserted 1immediately following the 1ncorrect
statement. A single letter abbreviation represents omne of
these messages. These messages appear on the console together
with the statement that caused the problem, as:

'0067 0048 LC (HL) ,A

*t%%** ERROR CODE = O, OPCODE kdkkkkhkhhkkdthhkhhhhhhhhhhhhbhdn
and

'006A 1140F4 LD DE,0F440H; STARTING ADDRESS TO OUTP

*% WARNING CODE = T, TRUNCATED LINE dhkikkikhkkkkhrhkhhhkhks
They also appear at the appropriate place in the listing.
5.2.2.1 ERROR MESSAGES

A - UNBALANCED PARENS. The number of left parentheses
must equal the number of right parentheses,

B - INVALID OPERATOR. An operator not allowed by the
assembler exists in an expression. This usually refers to
a trailing operator.

C - EXPR TOO COMPLICATED. The expression is too compli-
cated for the assembler to evaluate.

D - INVALID DIGIT. An operand in the source statement 1is
a number with an unallowable digit or character.

E - INVALID EXTERNAL. An external symbol 1is used in an
expression with operators, as the operand of an EQU or
DEFL pseudo-op or as the operand requiring an eight bit
value.

G - UNBALANCED REP ("<",">"). Repetition symbols (left
and right angle brackets) not balanced.

B - REP ERR. More than 256 bytes of code generated, or
repetitions nested too deep.

I - INVALID OPERAND. An 1invalid operand or combination of
operands exists for this op code.

30

J - EXT LOCALLY DEFINED. An external global symbol (that
is, one named with EXTERNAL, EXTERN or EXT) is given a
definition within its module.

K - INT NOT DEFINED. An internal global symbol (one named
with INTERNAL, INTERN, INT or PUBLIC) 1s not defined
within its module.

L - LABEL. An invalid character exists in a label or sym-
bol. This error can also occur for expressions when the
assembler scans for a symbol.

M - MULTIPLE DEF. A symbol was defined in the label field
of the source program more than once.

N ~ LABEL REQUIRED. An EQU or DEFL pseudo-op 1s used
without a label in the statement.

0O - OPCODE. An 1invalid op <code exists in the op code
field of the source statement.

P - MULTIPLE PSECTS. The PSECT pseudo-op exists more than
once in the same program. More than one PSECT pseudo-op
is not allowed in the same program or module. A module
must be either relocatable or absolute, never both.

Q - BAD QUOTE. A string expression has unbalanced quotes.

R - OUT OF RANGE. An operand exists out of the range
allowed for the given op code. This often occurs for a JR
or DINZ op code when the operand 1is too large, that is,
the target is too far from the JR or DJNZ instruction
(>127 or <-128). It also occurs when "=$" is omitted from
the operand label.

S - EXPR SYNTAX. An error in an expression exists. This
error usually refers to wunbalanced parentheses or extra
characters in the expression.

U - UNDEF SYMBOL. A symbol wused 1n an operand expres-
sion 18 not defined in the program or module. This occurs
when a symbol 1s defined by and EQU or DEFL 1in terms of a
local symbol that has not appeared in the source module,
or when the wundefined symbol is referenced as an instruc-
tion operand.

X - PARENS TOO DEEP. Parentheses may be nested no mcre
than fifteen deep, although error code C may come up 1in
the ten to fifteen range (depending-on how complicated the
parenthesized expressions are).

3l

52.2.2 WARNING MESSAGES

H - TITLE TOO LONG. The TITLE pseudo-op supports a title
no longer than the line length wminus 53. Thus, with the
default line length of 132, the title could not exceed 79
characters.

T - TRUNCATED LINE. The 1input statement exceeds the
maximum. When the input statement exceeds the maximum the
statement Is truncated at the maximum permissible charac-
ter and the rest ignored. Maximum source line length 1is a
function of print 11line 1length as specified in location
106H (line length minus 24; see 6.1.4).

V - OVERFLOW. There are two sources for this warning--
expression evaluation and the DEFB/DEFM/DB pseudo-ops. An
expression, when evaluated, caused an overflow error in
the 280 CPU (that is, the value exceeded a sixteen-bit
field). This can occur for any expression 1involving
arithmetic operators. This <can be reset with the .RES.
operation. The DEFB/DEFM/DB pseudo-ops generate an
overflow warning if an operand expression has a value
exceeding an eight-bit field size (>255 or <-127).

5.3 Example listing

In this example EXASM 1is customized for an eighty-column
printer. (How to do 1t is explained in section 6.) We have
written this program:

TITLE *** MULTIPLY.ASM **x
NAME PROG

TWO-BYTE FULL PRECISION MULTIPLY

e wea We Wr Wa we wa we

GLOBAL MULT

UPON ENTRY:
H-L CONTAINS 2 BYTE BINARY MULTIPLICAND
D-E CONTAINS 2 BYTE BINARY MULTIPLIER

I

UPON EXIT:
H~L CONTAINS HI ORDER 2 BYTES OF 4 BYTE PRODUCT
D-E CONTAINS LO ORDER 2 BYTES OF 4 BYTE PRODUCT

ALL OTHER REGISTERS PRESERVED EXCEPT AF

we WO We we Wz WO We We We We We W

MULT:

PUSH IX s PRESERVE IX

PUSH BC ;ALSO BC

PUSH HL ; SAVE MULTIPLICAND

LD IX,PROD ;s INDEX REGISTER POINTS
; TO PROD

LD HL,O +ZERO H-L

LD (PROD) ,HL sINITIALIZE PRODUCT
; AREA TO O

LD (PROD+2) ,HL ;INITIALIZE LO ORDER
sy TOO

POP HL ; RESTORE MULTIPLICAND

LD B,16 ; SHIFT OUT 16 TIMES

SHIFT:
XO0R A ; CLEAR CARRY
RR D sROTATE RIGHT THRU
‘ ; CARRY

RR E ;s THRU LO ORDER BYTE
; TOO

CALL ADDHL ;IF CARRY, ADD
y MULTIPLICAND

DINZ SHIFT-$ sIF MORE BITS TO
3y SHIFT, ITERATE

’

LD H,(IX+0) ;ELSE, PUT HI ORDER
;s IN H

LD L,(IX+1) sNEXT HIGHEST ORDER
; IN L

LD D,(IX+2) ;AND PUT LO ORDER IN D

LD E, (1X+3) ;LOWEST IN E

POP BC ;RESTORE STACK

POP IX ;

RET sRETURN TO: - CALLING
; PROGRAM

ADD CONTENTS OF H-L TO HI ORDER OF 4 BYTE PRODUCT
AREA. THEN SHIFT PARTIAL PRODUCT RIGHT.

DDHL:

PUSH DE ;PRESERVE D-E

PUSH HL ;AND H-L

Jp NC,OVADD ;JUST SHIFT IF NO
; CARRY OUT.

LD D, (IX+0) ;GET HI ORDER PRODUCT
; IN D

LD E,(IX+1) ;GET 2ND HIGHEST IN E

ADD HL,DE ;ADD IN H-L TO HI
; ORDER PROD

LD (1X+0),H ;PUT SUM BACK

LD (IX+1),L ; IN HIGH ORDER OF

s PRODUCT

33

OVADD:
LD HL,PROD ;POINT H-L TO PRODUCT
RR (HL) ;ROTATE RIGHT 1ST BYTE
INC HL ;POINT TO 2ND BYTE OF
s PROD
RR (HL) s ROTATE 2ND BYTE THRU
; CARRY
INC HL ;POINT TO 3RD BYTE OF
H PROD
RR (HL) ;ROTATE 3RD BYTE THRU
; CARRY
INC HL ;POINT TO 4TH BYTE OF
; PROD
RR (HL) ; ROTATE 4TH BYTE
POP HL ;RESTORE H-L
POP DE ;RESTORE D-E
RET ;RETURN
PROD DEFS 4
DEFR 0

We wish to assemble MULTIPLY.ASM, put the object file on disk,
print the print file on our printer, list the cross-references,
and not waste paper.

A>EXASM MULTIPLY/LEC

After assembly, this object file is produced:

$NAME 050111

$MULT 02000012
:20000000DDESCSES5DD215000210000225000225200E10610AFCBL1ACBIBCD2E
0010F6DD666A
:2000200000DDGEOLIDDS5602DD5SEO3CIDDEICIDSESD24000DD5600DDSEOL119DD
7400DD7501Cl1

:10004000215000CB1E23CB1E23CB1ECBIEELID1ICY9DA

:0100540000AB

$0C0000040006000C0O00F001A0031004143

:00000001FF

The listing produced by the assembly is:

FROG
ADDR

1>0000
‘6009
‘0002
‘90902
‘00604

‘000z
‘000R

'009E
‘8011
‘g012
‘30014
‘0014
‘8015
‘0017
‘801¥

‘901C

‘8O1E
‘9021

‘0024
'8027

#*% MULTIFLY.ASM *xx

DBJECT

DDES

(ot

ES
ODz15100°

210000
225100

225300

El -
0610

AF
CB1A

CRIE
Ch2E00 7

18F¢&

DD&L OO
DD¢ES L

DoSéez
DOSEe:=

EXIDY 250

34

N 2-1

=T # S0URCE STATEMENT

000z NaME FRIOG

0006

00064 ;

0005

0004 3

0007 ; TWO-BYTE FULL PRECIZSION MULTIFLY

0006

0oQ> 3

0010

8011 GLOEAL MULT

g9el1z 3

etz

0014 ;3 IUPON ENTRY:

001S 3 M=L CONTAINS 2 BYTE BINARY MIULTIFL ICAND

6014 3 D=E CONTAINS 2 BYTE BINARY MULTIFLIZR

6017 3

0013 5 UPON EXIT:

801y 3 H-L CONTAINS HI CORDER 2 BYTVES OF 4 BYTEZ FRODLICT
0020 ; D=-E CONTAINS LO ORDER = BYTED OF 4 BYTE FRODUCT
6021

pezz 3 ALL OTHER REGIZTERS PRESERVED EXCEFT AF

6O 3

0024 MULT:

09029 FUSH IX SFRESERVE IX

8024 PUSH B $ALSD BC

0027 PUSH HL $SAVE MULTIFLICAND
pozc LD IX»PROD yINDEX REGQISTER BOINTS
pezY s TO PROD

8030 Lo HL, @ $ZERD H-L

0021 Lk (FROD) »HL $INITIALIZE FRODLICT
o0z » $ AREA TO o

(Y 3l Lo (FROD+2Z) »HL sINITIALIZE LU ORDER
0034 s Too

X It FOF ML SRESTORE MULTIFLICAN
0034 LD Bylé SSHIFT QUT 14 TIMES
00837 SHIFT:

00sE XDR A sCLEAR CARRY

903% RR D SROTATE RIGHT THRU
2040 1 LCARRY

0041 RR E sTHRU L0 ORDER BYTE
004 s TOD

2042 TALL ALDDHL sIF CARRY, ALLD

0044 s MULTIPLICAND

9045 OJINZ SHIFT-% $IF MORE BITS TO
0044 3 SHIFT, ITERATE
0047

042 Lo H, (IX+9) sELZEs FLUT HI ORDER
0047 s INH

0050 Lo Ly (IX+1) INEXT HIGHE=T ORDER
0051 s IN L

005z LD Dy (IX+2) JAND FLUIT L ORDER IN D
005 Lo E, (IX+2) sLOWEST IN E

35

PRIOG *x# MULTIFLY.ASM *x%x% EXIDY 230 ASSEMBLER V 2.1 PAGE

ADODR OBJECT ST # SQURCE STATEMENT

"002A C1 0054 FOF BC sRESTORE STACH

‘90zB UODDE1 0055 FF IX H

‘e0z2n1 09 005 RET sRETHIRN TO ZALLING
0057 : PROGRAM
005:s ;
6059 s
0040 3 AND CONTENTS OF H-L TO HI ORDER OF 4 BYTE FRODLCT
0041 5 AREA. THEN SHIFT PARTIAL FPRODUCT RIGHT.
Q0L 3
0043
¢0&4 3

‘F002E 0045 ADDHL :

‘Q02E DS 00464 PLIZH oE SPFRESERVE L-E

‘Q02F ES 004L7 FL=H HL SAND H-L

‘0020 D240007 004 JF Ny avADD sJILST SHIFT IF NO
0O~ 5 CARRY QT

9023 DDS4ed 00790 Lo Oy (IX+9) sGET HI ORDER FRODUCT
0071 s IND

‘9024 LDDSESL X LD Ey» (IX+1) SGET ZND =IGHEST IN E

90322 19 07> ADO HL s DE SADD IN H-L T2 HI
0074 5 DORDER FROD

‘'903A [DD7409 0075 Lo (IX+0),H SFUT =M BACK

‘eo=D DiD75eé1 0074 LD (IX+1)L 5 IN HIGH IJRDER QF
6077 1 FPRODLUCT

0040 007< DVADRIL:

‘9040 215100’ 007 LD ~ HLHY»PROD SPOINT H-L TO FRODUCT

‘004= LBIE 800S0 RR (HL) SROTATE RIGHT 15T RYTE

‘9045 2= 0021 INC HL PPOINT TO 2ND RYTE OF
0oc2 s FRODO

‘0044 TBIE o0z RR (HL) SROTATE ZNIY BYTE THRL
0024 5 CARRY

‘9043 232 0059 INC HL sPOINT TO 2RD BYTE OF
0024 3 FRAOD

‘@042 CRIE 0037 RR (HL) sROTATE 2RD BYTE THRU
0052 s CTARRY

‘994B 23 ooz INC HL SPOINT TO 4TH RYTE OF
0090 s FROO

‘904- CBlE 0031 RR (HL) sROTATE 4TH RYTE

‘004E EU o9z PR HL SRESTORE H-L

‘Q04F Di 0097 FOF LE sRESTORE D-E

‘6050 % 80%4 RET SRETLIRN
0025 3

‘9051 _ 8094 PRCDO DEFS 4

9055 00 0097 LEFE "}

SYMBOL VALUE TYPE =TMT STATEMENT REFZ

——— - - ——— — o o — ——— — — —— —— — —— —— —

ADDHL ‘90ZE 8045 004z
MULT ‘9000 INT 0024 0011
OVALD ‘0049 0072 004
PROD ‘9651 BOVE 0077 0022 061 eeze

SHIFT ‘8014 0e=7 0045

36

PROG *%% MULTIFLY.ASM *xx EXIDY Z2@ ASSEMRLER W 2.1 FAGE
ADLDR ORJECT ST # SOURCE STATEMENT

ERRORS=0000

WARNINGZ=0000

6 Customizing EXASM

EXASM has certain default values. These are found in locations
103, 104, 105 and 106 (hexadecimal) of the EXASM program. They
contalin the «code for, respectively, default control options,
default list options, page length and line length. As supplied
to you on disk by Exidy, these locations contain, respectively,
the bytes O5H, O8H, 34H and 7B hex. These values correspond

to:
list on (byte 0)
cross reference of f (byte 0)
object out on (byte 0)
form feed on (byte 1)
page length 52 (34H)
line width 123 bytes (7BH)

If you want your EXASM program to have diferent default values
you may customize the program by using the S command (Set) of
the DDT program that is supplied on your CP/M system disk.
Let's say you wished to change the values 1in these four loca-
tions to these values: Q07H, 09H, 37H and 80H. Here's how you
do 1t (your input 1is underlined):

A>DDT EXASM.COM

DDT VERS 1l.x
NEXT PC
3000 0100
-§103

o
~

0103 05
0104 08
0105 34
0106 7B
0107 31

o
o

w
~

(V]
o

Now yocu have a new, slightly different EXASM program. But it
exists only in memory. If you save this versionm on disk, use
the CP/M SAVE command this way:

A>SAVE 47 EXASM.COM

37

Why 47? Each 100 bytes represents one page. When DDT signed
on, it told you that EXASM exists in memory from address loca-
tion 0100 to 3000. (DDT deals exclusively in hexadecimal num-
bers.) 30 hex is 48 decimal. The SAVE command saves from
location 0100. Since that first 100 bytes represents one page,
we subtract 1 from 48 to get 47. With the same file name, the
SAVE command overwrites (and replaces) the old file. If you
want two versions of EXASM, one the original and one with your
modifications, use a different name in the SAVE command.

A>SAVE 47 EXASM1.COM

As with other CP/M commands, you can specify the drive as part
of the file name, with the default to the currently logged
drive.

A>DSAVE 47 B:EXASM.COM

After execution of the previous command, you have a new file on
drive B <called EXASM.COM that contains your modifications,
while the original remains unchanged on drive A,

6.1 Default options.

To see why you might want to change contents of memory loca-
tions 103, 104, 105 and 106, let's see what they do. Locations
103 and 104 each consist of a two-digit hexadecimal number (so
do 105 and 106, but they're handled differently, as we'll see
in a moment). This hexadecimal number may be represented by an
eight-digit binary number, each digit of which is called a bit.
Each bit may be on (1) or off (0). The naumber five is repre-
sented this way:

bit 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 1
The binary number 00000101 (or just 101) is the same as the
hexadecimal number O5H., In this example, bits 2 and 0 are
turned on and the rest are off. Now, the default control

options for EXASM are these:

6.1.1 Default control options (location 105)

Bit 0 = 1ist output
Bit ! = cross-reference output
Bit 2 = object output

For these first three bits, 1=0ON, 0=0FF. The unused bits, bit
3 to bit 7, are always 0. With O5H in location 103, the con-
trol options default to list and object output. If you wished
the default condition to be no output of print file, you would
turn off bit 0 by changing it from ! to O. (Here 1s a possible

38

reason for doing this. You might have no printer and not wish
to fill your disk with print files and thus you don't normally
wish listings.) This changes the binary number 00000101 into
00000100, or O5H into Q04H. Now, to get a disk file listing
(.PRN file), you must use the D option. Without the D option,
no print files generate to disk. Turn on any of the bits to
change the default to that listed; do so by placing a ! in the
appropriate postion, and placing the equivalent hex number into
location 103, as described in the previous section.

Similarly, the default list options are these:

6.1.2 Default list control options (location 104)

Bit 0 = suppress generated text printing

Bit 1 = suppress warning messages

Bit 2 = “ecology option” (compressed listing)
Bit 3 = form feed option

Here is the number O08H in binary representation:
bit 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0

This is the normal default setup for list control options. The
normal default situation for list control options, then, is bit
3 only turned on, that is, 1{implementing only the form feed
option, If your printer does not have form feed capability,
you can turn this bit off.

No generated text refers to DEFM, DEFB, DEFW and DB statements.
1f you wish text in such statements to truncate after the
fourth byte, then turn this bit on. (Change the byte in loca-
tion 104 from O8H to 09H.) With the bit off (the normal de-
fault option), this statement
DEFM 'HI, I''M YOUR FRIEND.'
produces, on assembly, the following print file:

EXIDY Z80 ASSEMBLER V x.x PAGE 1

ADDR OBJECT ST #
'0000 48493C20 0001 DEFM 'HI, I''M YOUR FRIEND.'
49274D20
594F5552
20465249
454E442E
ERRORS=0000
WARNINGS=0000

Notice that the object code contains the complete text.

39

on

With the bit turned pif, however, on assembly, the following
print file is produced:

EXIDY Z80 ASSEMBLER version 2.1 PAGE 1

ADDR OBJECT ST #

'0000 48493C20 0001 DEFM 'HI, I''M YOUR FRIEND.'
ERRORS=0000

WARNINGS=0000

Notice that in the object code text in the 1listing beyond the
fourth byte has been truncated.

Similarly, 1if you wish to default to "ecology option” (paper
saving-~guppresses form feeds in text), rather than having to
always type in /E as an option, turn on bit 2.

6.1.3 Page length (location 105)

The default page length (lines per page) 1is 52 (34H). You can
change this to any value up to 255 (FF) by the method described
earlier.

6.1.4 Line length (location 106)

The current default value for column width is 132 (84H). If you
have an 80-column printer, you'll want to change this byte to
SOH (or any other value). Note that printer line length minus
24 (decimal) is the maximum source line length.

40

280 MACHINE INSTRUCTIONS

7

oAb 1M 9¢508901 4 ary WD M AR 5.8 v un IT) vaol Id
$Prab JYN - 1050R303 1N 118 1ua 1593 Qs HG n fmigat 9%
PCAN DN 90508D0) URD) aasin AR S5ED 1 H0 e 1000 %
44501 6343 LRI EERYL 16R 1580 R0 v oo ¥
AN AT &1 RLRLE PR 0882 vy (LD w 1001 (13
Al MSIEY S0 V55 1veay wad ann n aoav 154
At g3 X] [SOT] UM S SO You) nud IO 19 200y 'S
A1 004 L3y 1es N Hyuy 0vY) L] 08 Boay o
0= A1V 4D 9 Yy HESIH BLTH] Jval v oy v viay »
(Pear yu 50984 4 155N I'T18] WrAJ QW) HOY v nu o ay 1»
‘P Al HOX WIvay ansy wva) vrad 1 HOX ov 1300 a
PAh ONY A9val ANKI DA Y FRRRL] 6VH.) 609) H HOX v LES Je
19141 ¥ WS $03603 g sneara a5y IN ¥VHD e 3 ox oY 1501 ar
®- AN aNs 50964 1 11y ~ra vesiy 7 (v9) Q HOx vy ara vy
1P A v IOV S01804 g roru/n MY SN IVAY [RUTN R] LA M I ¥OX (14 2501 (44
19-A1} vV GOV <099 4 “OrK)) x Tesiy “wK) (KRR $12. 5] H HOX w e)y01 B
(PR X 503/03 Ml 00 HYSIN e 20 1Mm oo v anv w voal ‘e
Ty et oy) 4 18 ST F) 1o LB €49 VM G ov am9Q) 90
N osuan Wy arsiy vnd nem 29 1any 34 1801 5»
118 AN 9 “M_ou NN Y 1Y) S0v8U) JeSIN Lvyd J0 18 108 u guy »v NN 801 144
9 wal .SLE LUNEAL L] “aPRID Brsy OVAY LR} qve2 3 ONV (34 368G (44
34Peal) 01 D108 v 1987 wIsly 158 \ALH 4£8) d GNY v geql [34
P Shn 164 14SNd ML 4187 M ESIY 368D [RCTR ') 383 9 ONV %4 3801 te
A] NN Od V1Y) s a48) YVESIN 09692 AREL argd g ONv av LR A or
Bran 101 503304 W gt] PEE 3480 HESIY 2680 CRLLY 282 v v &S 46 433 i
P20 ¢ 01 509304 NN O of 1S 718 IESIM 8602 1 8180 141 ¥ 28§ % Nval 03t
IPAN 301 503504 K404 Qciss vie)y Ui sy V68 il 1as vead 1 v o8s as AELL ac
PoAt @ Q1 509524 Ud 1Y Y1198 P Jrsan 6680 2 s 608 v D8S » v 2K
I1P<an 3 a1 03v04 @ i5H 913 8467 0ESIN w6NT @ us ued 1voms 6 43 330 9
w.An8dl 09004 N v DBS YIS 19y veIsim 1680 v vns 129> g v us w6 1NN Y Y Soreve
JS Al GQY €0 WXL 138 34508300 (1419 133 9403 YIMCE S Iy F6HD 10 wHS)23 3 v2es &% 45 1M a0y bod
NIPcAtl 01 02509504 (X119 1315 94508300 19138 53@7 1Zs)y [73:F Y wHS aza) 9 vIEs 96 $100 ¥ 3z8c
WAt 330 05004 Pex) §135)I508200 HoldS vou) wIsiu v6R " vys FYLES v ens It 438 (43
1B~ AN INV sorcay P:x1p13S 5IWEI00 39S L6 125m [k IvHS 8zA2 1M1 BNS. % N (W) 01 023C
Al230 aras WexIL 43S I0S08IA0 U9 1) atsiy 2682 Q vys vz 56 171 330 5L
INN) ALDT WK Z KPS 90504300 29105 1189 PeTIM Y > vHs 5242 " 134) ONI o
AcaiQoy 6tas @)1 495 3INEIQO 9913s 0485 Besin 0682 9 ws 06 6 45 ONI €
Al INY €20 @ xN01IS 93508700 vSids 118> VIS 2882 vvis @283 26 ¥ (NNI Q) S0r&C
AINN) O1 S0P8Z2G3 @ XN {SIH 18500700 (15138 3ie3 ML S 3882)M ¥ IS Py It NN dS 01 SOvaLE
NN ALQT sovBi2dy X195 98508200 0382 ased 1vas SZ4) 06 SIQ ON oI 320¢
3d A) aav 6.4 P-X10$ Sy Ivs08300 2343 980 H YIS [£4:5] 38 42 2
28 A) GOV 6004 P-X Y 5IN 9V608200 PELE] fe80 Ives 29> n NYa) orz
NN W 11v) S0ve03 19X {$3¥ I650820Q w383 vedd avis 9> as 1339 a
] a4 P-xNT$)s 36508200 §303 690D Jvis 1202 » oM x
LUT g Soedv i P XHLSIN IES09200 218 ”wEd 8 vis n2@) a I+ 2310 L.14
H 45 a1 :F] P21 0334 985083dQ 039 1992 vy 389 ve INNE T Q) SOvewZ
w13y 84 XN A0 3LS080aa 9382 9e8D VM) HY 3193 ¢ ACR TR) [14
HOC 1SH 11 P19 118 94508000 5183 $182 1wy e P $1Q 2 or 20
N HO 0234 @XM 5119 319508700 193) N 183 . vvg es
49 MSNg 41 XN Y28 99508300 £38) €U8) 19y 9(9) 9 NHO1 R
NN4d 1vd 5008t 4 2383 2082 quy vigd e LIk b
0 K3 1389 186 T 6192 v N o4
NNy 50v82 9 0383 0892 9Ny e e e €
v 409 [¥) ®-x12 0118 5vs08I00 1097 2193 vy FL3] 2} 14NN Q1 S0v8z2
d4 13y 04 1901 IYS 3€5082Q0 (1M 138 3aed 1ML e 9D [RLTIRt) 98D [{} wN INaT S0P
MOZ 1Sy It} Xl vis 32508700 LIS 948 Ve e [J1: =) AR T] sS40 o8 $4Q°2N urf Jzaz
N HOX 0231 L UR Y HE LIS 2093 N 2482 Y »9) " vuy #
¥a10 69843 3£138 908 14419 LITE 1w ey Y N3Q1 0234
yaNI v9a13 @-X) T8 51508200 atiis vg8d gL A8 viRd 0y 2193 ot 12330 at
404D £00) Bex) JuY 30508300 2r13s &Q8Q 31 119 PR 2w 118 k9] 3081 N
¥ag1 803 18X 318 B0S0EIA0 0Li3s 808 118 LR AL 0183 I 30233¢ @
wn [4-1iF) Xt4sG1 6300 vZ213$ 249> v9 419 19 A\ 1L 089 we 130V v Q) vy
HINE 84’ oh of 63UQ 1M Z13S 9082 1IR)9 119 9492 V1w JBB 3089 [30 Ix aay 8
¥l 1803 X MSNa $300 1S $Q82 19 18 $L9) 10uy a0qd M MLET Rr41%
wal 0803 Xt g5t X) £3go NZ13S °a8) M3 118 177 JHY 2002 1 vy N
aino v03 X1 40d \igo 3243 [{ k] 19118 23] 3wy 9093 En Naay 029
MEL 1SY 41 ant vva3 (LR PR 5030840 aziis 2092 093119 29 0 Yy A { Bl ¢ 9230 st
0r34 QeI §v33 1P+ X0 BO sg98aa 22138 1992 29 18 1183 LETT) 609 K (W 0 " (L1l "
140834 ¢ aql fval 10X HOX S01vaQ azi1ds 009) 99 110 0490 | Juy 208) ERETIE L) w 300N) o
iP+AND 1S 3450030 1no (vo) i#xn ONV 509vQd Vi3S 4202 vs e 1900 v I 108) a1 1] v4iq 01 (4}
PrAUSE3S 33508004 I val $P<Xn v 28s 5036Q0 1M1 L3S 3299 WS 18 3983 [RCT) 908) 211 @Y Y] NN 01 Soes(L
IPCAND 1IS 93508304 @ 1vg3 > X0 8N 509600 1113s 49 TS5 L8 ased AEA 5083 81IHQ) o $1Q 7870 Jeob
W ANT13S 10508204 19Y oval (Poxil v 50V 503¢00Q LIRS 2782 S8 2982 MW v08) v a1 It) YIHY 10
AU Z 13 90508304 INN) ¢S5 01 1P+ %11 ¥ 9O 509800 ¥113s 88) 3’5 149 8982 13 c08d 1 a1 29 NDOY 0230
IPTAU L 13S 3509345 4S YW oav waxh'v @1 s03ia0 an)is 392 as e V3983) 2089 1rgY as 29530 a0
P ANOLIS 97508304 VI3 100 viP x11Q1 50L4QO0 J113s 6263 2518 698 331 e RY:L] 29 EELT %0
PeAL1SIN IBS0EIQ 190 v N TiPext @l $052GQ 81435 828 9s 1y 938 23 0083 yal 99 29930 90
P+All9SIY 9GSOEDTS 45 INN) 1 LRI 11N) 50v£Q0 voLIS 4382 velg 1983 NNT dF <ovavd a1 01 v3 wa vy al vo
1P ANSSIY IVS08I04 43 I8 285 3P xnt 01 508200 M0 LIS 9382 CMHIy 118 %987 L3y [} 2101 69 28 1H gOv 60
WA TSIM 9VS0RIASH (1] QWPexn 01 02000 10115 PATE] 118 9362 2139 9 a1 01 © IV 9Y X3 80
PP A ESIY 16508303 % 31 Jav waaral 014090 MO0 LIS 2280 L3 L] ¥3f) 0138 IR v ROl 19 VoY w
1P+A'2 S 96508204 111 N0 8 (P xn QA1 $00¢00 10138 £38) vy (& 1: k] NV Qv oz [ALTRYE] 9 N8O 079%0
P.A L S3W 39508204 i N ®xn Vo 5033GQ Q013s 2383 grue 2982 8 KSNe s INal <9 83340 0
(P<ANOSIY 9US0EI03 ony 19X W Q) <09900 20135 19983 ER L] 1992 NN 7N 11v3 Soreed HMOl] 4N "0
1P« AN £ 118 32508203 IH IMDES 2903 1PexiC 301 03500 20115 Q2ad By 119 0982 NN dr SOVRL) INA (2] 9 INY (4]
1PAIND 1B 90508204 w11 no 1903 1P-x1'g g1 509500 v Sy ILLH ves 1580 NNZN o S0vezD awal 2 v 18! 01 20
P<AI 5118 39S0RDQ4 1) v N 03g)d axn) gV S03edQ [RLINSSL] 198) I C 18 3482 28 404 (%3 Mgl 19 NN DB 01 HoeLD
(P<An ¥ 108 95508203 I 1503 BxD A0 50900q 115w aae) yC e o582 2N 13N 23 LG 09 40N o
1BaAl € 108 IS50EIQ NN JOOY $0099503 48 X1 agv 610Q LYEAT] 3682 HE 18 3542 v 4 49 viagl 25 INIW3ILVIS 3000
19-AUZ 118 95608303 30 1% 20V v$93 NP 01 02509000 1453y 8687 1E 8 8592 1341 4D 39 RLIEX]] 35 3IYN0S 80
(PsANT LIE 37508903 112 1no 6503 P.x10 210 505€Q0 aisiy vasd acim vsad 143 L] T30 as
(PAANO LS 99509303 2 3IN 9503 @0 N $a%f Q0 213y 688D Jc 18 658 CPH n PELS 25
1IP°A1 TYS ICS0EICS 1vay 1503 X) 230 woa X221 [J::a ac ug 859 3192 a8 3300 95 -d0
2508304 Lo 95a) INM) X101 <0rav2dQ vIsiy 109> vl 1583 ae va 0 o vg 3Q09-d
92508304 1O NN Q1 50981 503 X%t gQv 6/Q0 NHI95IY 599) 1Mz I8 25592 243 [23401 65 A9 Q31Yy0S
31508204 30 v J8y 2503 X4 IN) 209 195y 5909 1z 1@ 455R) 94 (&) LEK) (3]
InIwailvis 3aoo] [XNamaivis 3aoa INIWILYES 3000) [inIndlvis 3aoo ININILVIS 3000 InawaLvis 3000) [inawaivis 3goa| SNOCLINULSNIE
3I¥N0S 80 32YN0S 780 328N0S a0 3JUNOS 80 3OMN0S 90 ADHNOS 180 304N0S 90 NdJ—08z

L3S NOILONHISNI HOSSTI0U4dOHIIN 082

41

Z80¢ MACHINE INSTRUCTIONS

139D EELT) 6003 ersay %8) veay 1vd3 a®xn gy 0200 FEE) ®-Anv g
LYCR) LT 08 VIS 1683 NN W ay Shymz Jwinn o) %014QQ 34 1200 g1k
1193 LAY 10m) AT SIH 1650830 INND TR) =213 17 ywyngl 0000 Qa4 IR 18
1B AN JuY 10508307 PRI L SID 16509300 NHOT oz viexn gl (SN2 943 NONY
W9 135 93506309 WoXI Juy 10508300 AL 1] 64 1Al 59 NiTHI 01 azst €42 Yany
I 9135 9319) IM1 Juy 1060 T2 <68 HNel 6] 1M Ay at v4r 1y
15138 usn wuy nes v%e) IHOL 1 w0 91 » Peanad § N
HS 1S 23] Tuy 123 16@d aHQl [=] yiwal [z w-x1) ¢ auny
19115 9| H Uy Q9Isiy 2680 U 9 CCIEA] u [RCTISY I ONV
dnars ALkl VYyu YA L] 164 gma) o9 21w 00 1 PES 8 ONv
IS8 6180 QT LEA3 1 0687 vH(? 19 B1IH QY ot NN 7D v aNv
esan [B k] Jum v2siu 1683 @ ANK QY 50990 4 v e Q1 I NN D4 11V) Unv
AA R 1319 ANy iP-AnZ M 9650R M3 ®xnHal weeaa v 1o gl [LUEFIRRL M aNnv
WANG LIS JISOBIUY \T] X0 53y 98508200 [RUTRN-) 39 A IR 0 NNg 1Y) 181 NV
IP.X) 5198 31%08.00 WeAN Y 9643 Ny [041] S0 2 o 1282 NN ZN 1Y) 4§ A1 OOV
WM § 43S 3180 Wy aned 1y Qs 1A IN Wl 1274 NN DIVY Al AL GUY
1p 198 <193 (v wy Jee) #1101 s SIGIN BY ot NN IN 11VD 10 A1 qQv
Wy aas »)a aw a06) 114y 85 $(Q ¥r 2 NN W 1IE) 98 A1 QaY
Vi3S [41F] vy vea) 0191 vs 510 3 ¥ 3281 NN TIVD 43 X1 AqQv &00
qavyas (A Lk 12y 6890 Jial 64 NN 7 dr Sarevd) e Xt X1 QOv 6200
Ivass YLk HOY 9003 aia »s NN O of 500823 Nz 3Q »1 0Qv 6190
aris 036) (301 992 viol 15 NN 34 4f SOV Vieaa 28 x1 0av 5000
t38) ad1H 3650920 WA Q1 0 Isa3 NN 4§ 4 seesed a8 4% 1N QY [
[LIPY 91508304 I WweNdu #ex1 101 50 19 NN /N of SOPeL) J¢ 1@ nifd 1M W gQv (Y4
(LY 91509300 LAl W i~ NN 4r S0PRTD ficne R#D 30 ™ Yav]
[(ACTENETY 93101 vom N&)0 @) G0v91 1 NN Nl sovezd v 118 148D M ™ agv 60
L3S oued Waan 2y (NN JQUY $S0reRSQ) NN o “orev 4 WAV (38 J750RI4 NY Oy 029
ME IS 308) %12y LA 09y NN a1 B 3250800 v gav s
17138 9ge) [RUTSRI] yqal %5 AN 6303 RISy] e » v aay e
QT3S vu8l vy Hac) % i dr 6300 191 83 1 v 00w e
€ It IS &Qad AL)40l s £IM) ¢ 63 weig UE] “av 9OV b
av v i3S 308> LR aq0) 133 WINI ¢9Q) 19 118 (27K 1% 00w e
kad Woanl 133 HOWwaIU Y 3y 19y P A DS IY p2aal 15 N1 Zvaq) a91@ 219 v anv 09
™ W xICE LIS 10508D00 Q1w 718 (R TR AT fg9a1 0% HONI veQ? RERTU NN Y] &1 v Qv I3
had 1M LIS 309) [ACINLRE L] vaal {5 am(vvai a9 1e 0,92 WAl Y UaY 500803
&~ 8EldS 9083 AV MSNg AN Q01 50950 4 5 I8 33 vang e Pox v QY 09800
”w YZ13s 5082 X1 S0y @-x1aqQl @95AQ 1IN N (P-AUD 1@ 30508204 Mk v Qv o8
[CES¥} Qa2 H HSNd (RN £l ALINI [24:7] @-X119 118 92509200 5 T2V via)
so3avas 3z138 tae 30 M504 LES 0z30 X) INI tzoa RUTENTT) LYCF] AR ENN vIQq)
W ivoo aziis 2083 I8 HSNg 120) ar IR INT €2 IsLe Q9n) 10 ™ Jav vsQ)
v 22118 199) IV HSNg L2 n N ONI 124 S8 98I 28 M J0v w03
arso ez 1S 0aB) At 9Dg 31301 ar [ELT N 16 1R 2902 NY Jav Lk}
56 vZi3s 1083 X1 804 9429y v 30 ONI o a5 18 w993 1vi0v a8
”" ®-A(1Z 1S 9GS08I0) M 204 3301 Q9 IN ”" 3518 €983 MV Iav 8
“ ®-x1211$ 99508100 10 404 8y 23N 20 as319 /985 yv Jav a8
= Nz LIS A 349 w04 ¥aa i 2a Nt €0 v 1987 av oy ve
0 1048 g9 v 404 ®-an3a) 03904 PEM " P AN 18 39508303 J v av R
0% Wi 2383 o w1301 s01vaa v OM 2 W X068 39509300 v Qv o8
s 211138 ey 010D 1M 8Y » e <Ov0s M5 3@ 1983 v v Jav %
0805 Quids vad v (N) I NO NN 28 01 S0reL0 @ X INI S0P Q0 v im 5983 - AICV QY 018G ¢
09600 21118 6283 INN) 3@ 01 5Qv8av0] W6 DN " LR RIL] »9R3 Poxi) v DO <0800
% LIS @80 NEo1 0299 IR ET] 9903 ir e 993 1M ¥ AV »
e v i3S PR 1801 S0 1301 M 0901 arim 2982
0 DAt IS 395083Q) AN 1801 » [RIERT] 3503 v um 1997 ELELETA2H 3903
fdsd 1P X0 U LIS 1I$08I00 2901 134 1rant 0593 aviwe @98y 3IIHNOS 80
(ﬂnw ACIENE 1083 ﬁu_“M“ ““ DI NI 9a) vy __" 1982
] a3 I oral W ADE LB 99SDENH S
b xun"“ s381 uuu“ o N1y NI 0290 Wexnv 1 99508390 JINOWINW
e €202 (DoAILLSIN 38SD8I0 S o YV N [JCH 1ay e 9992
LeSarsersd doid 28) ®-xisIy)308300 BangO) sevad m 3503 1eie gs8y A8 Q3140S
a0 v M 2SI 1993 -xiea LWL a3 ne
1190 Yus Fdid wu““w ewmw :m“a 5883 RLILER ” ow a1 It e asad SNOILINYILSNI
1 vus om w013 1383 WISy vaad LA 03t N 3¢ of 1§ w583 ndJ—082
H vus U PeAT OIS 93508 3’959y (a8l Ivol a xx3 50 6502
hohed (B0 135 33508300 assy 2992 'v ol 1501 Ts 30 X3 4l 8582
v 11800 135 939> 2931y 1982 LA X} N LIV JY X3 20 1580
<D 198 I 89594 089 Ival 8¢ Al et X3 £3ay 145098304
s B ACE, 193 vIsIy 1992 19+ Al ¥O avol vi X1145 X3 ¢3ag 35508209
fra WOWH IS 790) 0-AD9SIW 98508303 (L3 18 1] ALEP D §) 3 e 418 3582
WA VIS IDWOAS FLREET 7501 19X 9534 98308300 miyo 3] w4 12108 5589
WX Vs 32SeR000 EIRIVELT raa 111919534 9943 40m $10 7860 201 HZ 19 583
1) VisS e NV 98 230 15s3y Qv 2N 1a €4 2718 (325
o 1v Jes a6 ®SSIH Jv9d w01 43214 . a,~ re 2583
w0 E E I5s3y eva) 01 1310 az 2T 18 1589
[¢4 <3 3 voes [:13 5838 vv@d 4901 A1231Q 29Ia4 ez L8 0582
e avoes w6 553w 6v8d aal Xt330 ezaa e 1589
1% =) 2w aas 6 B8SSIY [14] * NNJdS O L2] .14 PAICL 118 95906IQ 4
orn) 9vJas 6 v'$3Iu 1vad Atds Q1 43 (NN(Q) H 230 Sz 1P XN 2 119 95508304
v v Jes is X145 Q7 ATINNTOY 3230 @ 1ea Z 268 958)
18 ANV D8 5016Qs TH 45 QY X) (NN @1 30930 el 100 ora3
Wl v I6S 502600 11 S Sy wed (NN(s Q1 M INN(O dd3a St Wi g FITH
W1 v I8S 26 Teshy sve2 N1a) 0NN 3330 a0 e oad
915y) e sy el 1101 J8{NNI QY wOPEENG]D J93j0 a0 gi e wred
HEC M Su 13 3rSIV [vad LX) 8210 0 Jvue (14 =]
HOC 15¥% ¥ arsiy va) 3101 A v 230 314 avae [(=]
HBZ 13Y i Jvsv wvad 101 Tivaan dl w®-And3a <0SLQy e 9@
#0245y o ersin ovad 2701 WiP<AL G S0r¢Q3 94X 330 05190 P-AIN1 1D 39508204
M3l ISH iQ vESIY (vQd LR XA} F (A0 500104 {330 st (P<X11 1@ 19508200
0L 1Sy «” 1P AN Y STY 9VS08IA4 vial Qiv-an Q1 SOLLQd vvQ It VWML BN 3083
01548 13 (PXI#5I8 3V508000 Paarral 503993 I Baana 501401 14 2 101189 Sray
LD URNE Il] vy 4303 awved gD URK R 5033a0 @ AN A 500104 WD 1891 “oig »ad
10 vouu 10 ML ased 1ul 107 9 YiesAN Q1 901103 43 \v@d Jolla ™8
S8 L1 Qaeed %31 2683 NN AIGY S0PRG4 N (P:X) Q7 0250%Qq 8a4d €8a3 ao1e Zved
) WImy 2003 ICSI 9683 NNU ALY S0PEVZAS Tipexn g1 505400 043 §v03 J0ue 1982
[%) =] 3 Jun avdd gL sIw 69D NN X101 S0ve 204 H (P« X1 0 S509¢GQ N olis 901m oedd
U q Iy voud TSIV 6699 INNI'XI QY S0PMVEQQ @ el S0CLGQ 140 qe vg1e Leaa
ANINILYLS 3003 ININILVLS 3999 IN3IWILYIS 3000 AININILYLS 3002 ANIWILVLS 3000 ININILVIS 3003 INIWALAVIS 3002
I WNOS (] 334N0S o 38 N0S 90 32UN0S 80 3I¥N0S 90 3J¥N0S a0 3I9N0S [2:[¢]
e —————

42

PART II: EXLINK

8. INTRODUCTION

When creating a large program, it 1s convenient to break 1t up
into smaller modules for several reasons. For one, bugs may be
detected with greater ease by analyzing one small module than
by confronting the entire program. Also, reassembly of
individual modules 1is quicker than reassembling the entire
program. Finally, this ©breaking of programs 1into modules
permits storing a large source program exceeding the capacity
of a single disk drive.

When creating individual modules, however, program references
between two modules must somehow be linked together for the
program to work as a whole. This linkage is performed by
EXLINK.

To understand EXLINK we need to review the two types of modules
we defined earllier in section 2, An absolute module is one the
user puts purposely at a specific location. This location {is
called an absolute address and the program must execute at that
location only. Absolute addresses are rarely used because of
the inflexibility they create in programming.

More —commonly G4sed 1s a relocatable module. The starting
address of a relocatable module (an offset or relative address)
depends on the address of the preceding module and may at any
time change 1f, say, the previous module changes size.
Relocation 1s the process and abllity of a module to be moved
in RAM and still maintain a network of communication between
modules of various, sometimes changing, addresses. For
instance, if Tom told us he lived three houses from Harold, we
wouldn't know Tom's absolute address until we knew Harold's.
That 1{s, Tom's address 1s relative to, or an offset from,
Harold's. Knowing Harold's address, we add three and come up
with Tom's actual or absolute address.

This same principle applies to relocation, wusing EXLINK. We
would not want to assign an absolute address to each
instruction in a module, for if we did and needed to add or
delete an 1instruction, all else would be thrown off. With
relocatable addresses, the location of each instruction is
relative to the beginning address of 1its module. Because
modules are stacked directly on top of each other in RAM, the
beginning address of each module is dependent upon the end
address of the module before 1it.

EXLINK is an Exidy program that runs under CP/M. EXLINK is a
relocating linking loader which builds machine executable Z80
code in its memory. This code 1s obtained from both
relocatable and non-relocatable (absolute) object output
modules of the EXASM assembler. As each module 1s loaded,

43

Three user-input parameters provide instructions to EXLINK,
indicating how relative address relocation is to be done. They
are:

A=XXXX (starting offset number), given on the EXLINK
command line

ORG YYYY, given within the assembly source module before
assembly

filename _ Z2ZZ (offset number) given optionally with each

+0BJ file EXLINK load command.

The default value of each parameter, 1if not otherwise
specified, 1s 0. All three values are summed by EXLINK, and
this sum becomes the starting address of the module being
loaded.

Generally speaking, in the case of loading the first module
only, the programmer uses either an ORG statement or an A=XXXX
(starting offset) statement. Because CP/M uses RAM from OOOOH
to OOFFH, the programmer generally starts loading programs at
100H to create CP/M command programs.

One way to establish a starting address for a file 1s to
specify A=100 in the command line. The ORG statement (ORG 100)
also accomplishes this. However, this 1is placed 1in the actual
source of the module to be loaded. If a programmer wishes to
move this module at a later time, the ORG 100H places the
module 100H past the last module loaded, leaving a 100H “"hole”
in RAM. Thus <changing the ORG address requires reassembly,
making 1t a more “permanent” command. The A=100 option 1is
changeable at each link time and is only used when loading the
first module.

In this case, using the offset address 1is convenient. Because
EXLINK supports negative offsets, you can specify -100 in the
load command statement. Thils compensates for the ORG 100H
statement and places the module one byte after the previous
module.

Thus, the first module's starting address 1Is determined by the
sum of the ORG address given in the source file before assembly
(1{f any), plus the address given on the EXLINK command line by
the A=XXXX option, plus the offset included immediately after
the filename first given to EXLINK., Only the ORG address
applies 1f the module is absolute.

Each subsequent module 1is stacked on top of the previous
module, automatically. That is, if the wuser makes no
specifications, EXLINK automatically determines the next
starting address by adding the end address of the previous
module plus one, the ORG address, and the optional offset given
after the filename (notice, again, A=XXXX deals only with the
first module being loadeéd). EXLINK loads the next module at
that location.

44

EXLINK 1s itself relocatable since it finds the user's BDOS and
overlays the Command Console Processor (CCP) at the high end of
CP/M's memory. That is, while EXLINK 1s loading, it locates
itself 1in that area in RAM. This feature provides the maximum
amount of RAM available for user modules. The diagrams to
follow graphically represent these locations, In this respect,
EXLINK could be called the Relocating, Relocating Linking
Loader!

9 OPERATION

EXLINK 1s called from CP/M by typing EXLINK on the command
line. To wuse batch mode, type EXLINK followed by a list of
file names and a list of up to three options. The two lists
are separated by a slash (/). 1f you specify no file names on
the CP/M command line, the program signs on, enters the
interactive mode, gives an asterisk (*) as a prompt, and waits
for a valid EXLINK command. All lower case input is converted
to upper case automatically. All filenames must be
alphanumeric,

When EXLINK is called, it immediately fills all the memory into
which the wuser —could load his programs, with zeros (from 100
hex to the start of the EXLINK program). This sets all DEFS
areas to zero.

9.1 EXLINK interactive mode commands

In these examples, 1information {in square brackets [] 1is
optional wuser 1nput, and angle brackets <> refer to input as
described in the text.

9.1.1 *L [d:]filename[.0OBJ] [22Z2Z]

This command finds the .0BJ file with the given £file name on
the logged 1in drive (or, if the option d:--for any valid CP/M
drive --is specified then on drive d:). The filetype ,0BJ may
be specified but is the default and only valid filetype. It
creates a memory image of the file, and relocates it for the
optional starting offset ZZZZ. This is done by one or more of
the statements ORG YYYY, or 2Z2ZZ (offset number), as shown
here:

*L FILEl

*L FILEIL 100

*, B:FILEI

*L B:FILE1.OBJ.

*L FILE1.OBJ 200

45

9.1.2 *T

This command prints the current global symbol table.

9.1.3 *E (d:][<filename>][.COM]

This command exits the loader by writing the newly-linked
program 1in memory to a disk COM file (on optional drive d:)
starting at memory address 100 hex up to the highest address
loaded. The file name 1s that of the first object module
loaded or the user may optionally specify a different name for
the COM file to be written by including the <{filename)> option
in the command.

*E

*E B:

*E FILE2

*E FILE2.COM
*E B:FILE2.COM

After the E command has written a .COM file, the message
FILENAME.COM SAVED, RECS WRITTEN=XX" appears. XX is a
hexidecimal number referring to how many 128-byte CP/M records
comprise the .COM file.

9.1.4 *Q

Both this command and Control C quit EXLINK and return to CP/M
without writing a COM file. This is useful to abort an EXLINK
operation.

The command line may include up to three options, listed in any
order, separated by commas (see 9.2 for details). The options
E and T may be entered in interactive mode as commands.
Interactive mode 1is indicated by the EXLINK prompt * when
either all the <command line has been exhausted successfully
(and no E option was found), or a non-fatal error has occurred.
Unrecognized options are ignored.

If a 1list of batch files is given on the command line and the E
option is not specified in the options list, EXLINK returns to
the interactive mode with the asterisk (*) prompt after all the
batch files are loaded. Then, additional O0BJ files may be
loaded interactively before exiting. This also occurs 1f any
non-fatal errors occur during batch mode operations.

46

9.2 Batch mode options

The general form of the CP/M command line when using EXLINK in
batch mode is:

a>EXLINK [<filenamel>] [,filename2>][,<filename3>]...[/options]

<filenamel> (the first module's name) 1is the file name the E
command uses when {t creates the COM file, provided no other
file name 1s specified either on the CP/M command line (with
the E option) or interactively (with the E command). File
names on the CP/M command line are delimited by commas. Your
command line may contain as many characters as will fit in two
lines (up to a total of 128 characters). The OBJ files in the
list are ordinarily accessed on the drive currently logged on,
unless you specify a drive using the CP/M convention
d:<{filename)> for file <filename>.OBJ on drive d:. The filetype
.0BJ may be specified, but 1s assumed if {t is omitted. Only
.0OBJ files are accepted. The options 1list follows the file
name list and 1s separated from the list of files by a slash
(/). It may include up to three options, listed in any order,
separated by commas.

The command line options are:
9.2.1 A=XXXX [SSSS]

XXXX represents the starting offset to be added to the ORG
address (1f any) of the first OBJ module, and SSSS represents
the optional starting address of the global symbol table. As
the symbols are added to the table at the given address, the
table expands to a lower location or ‘"grows down”". As the
symbol table expands, then, the RAM available for programs
shrinks 1in size.

The starting address default is 0 1if this option 1is not useds
If SSSS 18 not specified, the symbol table starts at the
highest RAM address available just below EXLINK's code area.
The symbol table option should not ordinarily be used since the
symbol table 1s automatically positioned in the best possible
place for most applications. 1If the option is used however,
care must be taken to prevent the table from “"walking"” on the
EXLINK program, BDOS, page 0 of memory or the users program
which is being linked.

9.2.2 E[d:][<filename>][.COM]

This automatically exits EXLINK by writing a COM file using the
optional file name <filename>.COM on the optional drive d:.
The file name of the first module loaded is wused if the
optional file name is not included. The drive always defaults
to the currently logged-on disk for execution unless the drive
name d: is included. The file type .COM may be specified but
is the default (and only valid) file type.

47

9.2.3 T

This prints the global symbol table after all modules on the
command line list have been lcaded, as seen here.

*T

SYMBOL TABLE (UNDEF=*#*x%)

ATTN O1lE3 DRQ 0215 HOMEDK 0103 KKPLC 02A0
MINUS 0276 PLUS 0204 STQY OlEA SUBQ 013B
TTYTRU 02BB Z2Z2Z 0118

If the E command 18 used on the options 1list, and one or more

global symbols are unresolved after linking and loading all the
modules in the file name list, thenm EXLINK will 'display 'dn
error message and return to interactive mode. However, 1f the
E command 1is input interactively, and one or more global
symbols are wunresolved, then EXLINK displays the same error
message as a warning, and writes the COM file anyway with the
unresolved symbols.

9.3 Other features of EXLINK

9.3.1 Working memory or the "loading zone" is filled with
zeros before loading begins. Hence, a COM file written from
modules starting at an address greater than 100 hex, while not
recommended, will execute properly after being called from
CP/M. Execution starts at the module with the lowest starting
address. The preceding zeros are decoded as NOP (no op)
instructions by the CPU, and cause the system to "fall through”
to the first module.

9.3.2 EXLINK does not permit modules to be 1loaded in RAM
between 0 and 100 hex (this would wipe out the CP/M work area)
nor 1in RAM occupied by EXLINK itself. A warning is issued ({if
an attempt 1is made to load modules at addresses above EXLINK's
highest address. The user may override this warning. However
please note that by wusing this override, 1t is possible to
overwrite the CP/M BDOS and destroy EXLINK's disk access
capability. So, extreme care should be taken when loading
modules in RAM above EXLINK.

9.3.3 In the running of EXLINK, certailn messages are dis-
played. BEG ADDR and END ADDR specify the absolute location or
boundary limits of a module in RAM. UNDEF. SYM refers to the
number of symbols not yet resolved.

48

10 SAMPLE RUNS

10.1 Batch mode linking example

Suppose the EXASM assembler had assembled four modules of
source code with global references between them. The four
object modules are accessible as CP/M .0BJ files on disk and
are ready for 1linking. All are ORGed at O but the starting
address 1s 100. These modules are named MAIN.OBJ, SUB!l.0BJ,
SUB2.0BJ, SUB3.0BJ and all are on drive A except SUB2.0BJ which
is on drive B. (Refer to the Memory Map diagrams). Call up
EXLINK this way (user input 18 underlined, and carriage returns
are understood at the end of each line):

ADEXLINK MAIN,SUB1,B:SUB2,SUB3/A=100,E=NEWNAME,T

Exidy Relocating Linking Loader.
Copyright (c) 1980 Exidy Inc. ver 2.1

Starting offset is 100
*L MAIN

BEG ADDR 0100
END ADDR 012D
UNDEF SYM 04
*], SUBI

BEG ADDR O012E
END ADDR 023A
UNDEF SYM 03
*], B:SUB2

BEG ADDR 023B
END ADDR 02A9
UNDEF SYM 06
*L SUB3

BEG ADDR 02AA
END ADDR O02F7
UNDEF SYM 00
*T

SYMBOL TABLE (UNDEF=*%%#)

ATTN OlE3 DRQ 0215 HOMEDK 0103 KKPLC 02A0
MINUS 0276 PLUS 024 STQY 0l1EA SUBQ 013B
TTYTRU O02BB 2222 0118

*E NEWNAME
NEWNAME.COM SAVED, RECS WRITTEN=04
AD

MEMORY MAP
43K SORCERER
BEFORE MODULES ARE LOADED

FFFF |
VIDEO RAM
MONITOR ROM ~~
ROM PAC
~ DISK BOOT ROM —~
BEFF B8F@0
EXIDY CP/M
CBIOS and BDOS
- A7a0*
A6FF
EXLINK
(overlaying CP/M CCP)
93 FF* 9390+
A
48K* s .
USER
RAM
LOADING
ZONE
36K*
3YTES
- ¢190
PAGE @ (used by CP/M)
000a

Note: All acddresses are in hexﬁdecimal and refer to a
48K CP/M. This illustration is not to scale.
*-Approximate value

48K*
USER
RAM

MEMORY MAP
48K SORCERER

AFTER MODULES ARE LOADED

EFFF
—~t VIDEO RAM ~
MONITOR ROM
ROM PAC
-+~ DISK BOOT ROM -~
BEFE BEFCO
EXIDY CP/M
CBIOS and BDOS
GEE* A700*
A
EXLINK
(overlaying CP/M CCP)
Q2FF* 9300 *
SYM80L TABLE
~Z _
] -
/
LOADING
ZONE
36K+
SBYTES
//2258
B2F7 SUB 3 o
82A9 SUB 2
323A g238
012 SuBl 012E
D
N
dOFF MAL 2100
PAGE © (used by CP/M)
geco

Note: All addresses are in hexidecimal and refer to a

48K CP/M.

This illustration

*-Approximate value

is not to scale.

51

The console I/0 shown above is produced automatically after the
CP/M command line is typed in by the wuser. This is an example
of batch mode linking. Because all modules are ORGed at 0, the
only offset 1nvolved is the starting one (100 Hex), speciffed
with the A= option. The symbol table 1s placed in the default
RAM area. MAIN is loaded from 100H (ORG O+100H) to 12D. It
has four wunresolved external references., SUBl 1s loaded
immediately after MAIN, at 12E (the sum of ORG 0O + the last
byte 12D+1 + the offset 0, not specified). This process
continues for each module loaded. The T option displays the
global symbols and each of theilir addresses. The E option
writes to disk all RAM from 100H to the highest address, unless
prevented by undefined symbols.

Since the E command is included with the name NEWNAME in the
options 1list, EXLINK writes a .COM file named NEWNAME.COM.
Thic file is the memory image formed from loading the modules
MAIN.OBJ, SUBl1.0BJ, SUB2.0BJ, and SUB3.0BJ. In other words,
the output of EXLINK is a CP/M file (in this case named
NEWNAME.COM) corresponding to the memory image from 100H to the
highest addresg loaded (2F7) after EXLINK converts the four
object modules into absolute machine executable «code with
global references resolved.

10.2 Interactive mode linking example

The following sample run creates the same .COM file
interactively but this time it is called MAIN.COM.:

A>EXLINK

Exlink Relocating Linking Loader.
Copyright (e) 1980 Exidy Inc. ver 2.1

Starting offset is O (default offset is 0).
*L MAIN 100 (the wuser's response loads
MAIN.OBJ with starting

offset of 100.)
BEG ADDR 0100
END ADDR 012D
UNDEF SYM 04

*L SUB1

BEG ADDR O012E
END ADDR 023A
UNDEF SYM 03
*L B:SUB2

BEG ADDR 023B

END ADDR O02AS9
UNDEF SYM 06

*L SUB3

BEG ADDR 0ZAA
END ADDR O2F7
UNDEF SYM 00

*T

SYMBOL TABLE (UNDEF=%%¥%)

ATTN OlE3 DRQ 0215 HOMEDK 0103 KKPLC 02A0
MINUS 0276 PLUS 0204 STQY 01EA SUBQ 013B
TTYTRU 02BB 2222 0118

*E

MAIN.COM SAVED, RECS WRITTEN=04

A>
(Now a file 18 written named MAIN.COM since
the optional file name isn't included.)

The above <console I/0 1is much like the first example. The
difference 1is that after each * prompt, the user enters each
command interactively.

11 ERROR MESSAGES

Thirteen error conditions cause an error message to be
displayed. Some errors are fatal, and control returns to CP/M.
Others are non-fatal and return to interactive mode input (with
the * prompt).

#k%% CHKSUM ERROR *%wx

Checksum error. The Checksum computed £from an dinput file
record doesn't agree with the one originally recorded. This
error is rare since errors of this type are usually caught by
CP/M's disk I1/0 first.

*#%%% DB], DEF ERROR ***#%
SYM: symbolname

Double definition of a global symbol. This error occurs when a
symbol declared global and defined in one module is declared
and defined 1in another. The particular symbol |is shown
following "SYM:“. O0f the two definitions, the first one 1is
used as the symbol's value.

52

53

k* SYM TAB OVERWRITE ERROR ¥**

Attempt to overwrite the loader symbol table. A wmodule
attempts to load over the global symbol table and 1is prevented
by this fatal error. CP/M warm boots at this point.

*k** PROTECT RAM LOAD ERROR #**#*%*

Attempt to load outside "safe” RAM area., Protected RAM 1s page
0 (0000-00FF hex), and the RAM occupied by EXLINK. This error
is also fatal and warm-boots CP/M.

*X%% SYM TAB OVFLO ERROR **#%*

Symbol table overflow. Table reaches 100H. This 1is a fatal
error causing CP/M to warm-boot.

*Akk SYNTAX ERROQOR #***%*

This message is displayed if a command other than L, T, Q, or E
is entered in interactive mode or 1if non-hexidecimal digits are
used when hex is expected. It 1is also displayed 1if EXLINK
cannot make sense of the CP/M command line in batch mode.

kk DISK WRITE ERROR #**%%*

This error occurs when writing the .COM file 1f either the
diskette directory or file space is full, or any other write
fault occuirs. This error 1s fatal, causing CP/M to warm start.

**** BAD FILE TYPE ERROR **x%*

If the user requests EXLINK to load a file with a filetype
other than .0BJ, this error occurs. This error also occurs
when output files (associated with the E command) are not of
type .COM., The error is non-fatal.

%%%x UNDEF SYM ERROR *%#*x*
%% UNDEF SYM WARNING ***#

If the E command (exit with .COM file write) is used when
undefined symbols are still outstanding, this message appears.
In batch mode, this error causes a changeover to interactive
mode 1n which case the prompt (*) is displayed and further user
input 1is expected. In 1interactive mode, the message is
displayed as a warning but the .COM file is written anyway.

54

**%* BEG ADDR NOT 100H ERROR *%*%
*k%%k BEG ADDR NOT 100H WARNING *#wik

This message 1s displayed when the E command 1is wused and the
modules loaded don't start at 100 hex (the start of CP/M's
transient ©program area, TPA). 1In batch mode it is a non-fatal
error causing 1t to change to interactive mode. In interactive
mode 1t 1is merely a warning and allows the .COM file to be
written anyway for starting addresses greater than 100H.

kk%* [OAD ABOVE EXLINK ERROR ***x
ADDR: xxxX DO IT ANYWAY (Y/N)?

This message expects wuser input to enable/disable module
loading above EXLINK program. If N is entered, the link 1is
aborted. I1f Y 1s entered, EXLINK proceeds to load the module
and doesn't check again for modules loaded above EXLINK. The
address indicated {is the first memory location encountered
above EXLINK.

*%k%% _OBJ FILE NOT FOUND ERROR **=*x
FILE: filename

If an input file name is given to EXLINK and cannot be found on
the drive 1indicated, ¢this message appears. The file name in
question is displayed on the following line.

k%% NOTHING TO SAVE ERROR *#*%x*

If the E command 1is given before any modules have been loaded,
this message appears.

12 EXAMPLE OF THE COMPLETE EXASM AND EXLINK

Here is the assembly by EXASM of two ©program segments, MODUL!
and MODUL2. Note the unresolved external global references in
the object code of MODUL1 (indicated by asterisks). Notice the
trailing apostrophes in the object code of MODUL2, referring to
relocatable addresses.

Next, with EXLINK we link the two modules and 1load them under
the name TEST.COM. After the linking of MODULIl, EXLINK tells
us there 1s one undefined symbol (the externmal global XXX).
After the linking of MODUL2, we see that the reference has been
resolved (because EXLINK reports no undefined symbols). Notice
that MODUL2 1is assembled with starting address of 0000.

53

To compare code, we use the CP/M DUMP program. Notice that the
unresolved CALLs from MODULl are now calls to address O0l0OCH.
(CDOCO1). CD is the hex code for the CALL instruction. The
CPU knows that the next two bytes will be an address, with the
low-order or least significant ©byte first. That is, CDOCO!
means CALL O10CH. (At location OlOCH is the routine that we
named XXX.)

Notice that EXLINK starts MODUL2 at Ol0CH, directly after the
last address of the object code of MODULI. (The instruction C3
is at address 0109M, while the jump address 0000 is at 0Ol0A and

010BH.)

After the command file TEST.COM has been saved on disk, it can
be executed merely by typing its name on the command line.
What the program does is use CP/M's BDOS to print the message
three times to the console.

A>EXAZM MODULL/LE

EXIDY 2SS0 Assembler -

version 2.1

Copyrisht (C) 1930 by EXIDY INC

S6

FASS 2
MODUL L EXIDY Z20 ASSEMBLER V 2.1 PAGE
ADDR OBRJECT ST # SOURCE STATEMENT
0001 NAME MODUL 1
0002 GLOBAL XXX sEXTERNAL
0003 DORG 100¢H SORG AT CPM TFRA
‘9100 CDFFFF* 0004 CALL XXX SPRINT MESSAGE
‘0103 CDeleix 000S CALL XXX SPRINT MESSAGE
‘0106 CDO4O1% 0004 CALL XXX SPRINT MES:SAGE
‘0109 C306000 0007 JP) s WARM-START CFM
ERRUORS=0009
WARNINGS=0000
ACEXASM MODULZ/LE
EXIDY Z3@ Assembler - version =.1
Copyriaht (2) 1920 by EXIDY INC
PASS 2
MQDILL.2 EXIDY 750 ASSEMBLER V Z.1 PAGE
ADDR OBJECT ST # SOLURCE STATEMENT
0001 NAME MODUL2
¢o0z GLOBAL XXX 5 INTERNAL
’>0000 0093 XXXt
‘0000 211500’ 0004 Lo HL PG 3PFOINT HL REGISTER TUO
6005 SMEZSAGE TEXT
‘50003 00046 LOOP:
‘9003 7E 0007 LD Ay (HL) 3GET A CHARALTER
‘0004 B7 0o 0L R A s DONE
‘0005 CA1409’ @009 JP Z:DONE SYES, EXIT
‘9008 SF 0010 LD EA sNC, PLUT CHARACTER IN BLOOS
0011 s (REGISTER E)
‘0009 0OEQ2 o012 LD c,2 $SET WRITE CONSOLE CHARALCTER -
A 0013 sFUNCTION CODE
‘900B ES 0014 PUSH HL $SAVE HL
‘990C CDeéSee 0015 CALL S sCALL CPM BDOZ TD WRITE CHAR
0016 s TO CONSCOLE
‘900F E1 0017 POP HL $BRING HL BACK
‘o010 23 0018 INC HL SNEXT CHARACTER IN MEZSAGE
‘0011 (30300 0019 JP LOOP JCONTINUE FQOR ALL BYTES
‘50014 9020 DONE:
‘9014 C9 0021 RET
‘9015 ODOA 0022 MSG: DEFB oDH,»0AH 3CARRIAGE RETURN/LINE FEED
‘9017 S4455354 09023 DEFM ‘TESTING'
494E47
‘QQ1E 00 0024 DEFB 0
0025 END
ERRORS=0000

WARNINGS5=0000

ACEXLINK MODULL MODULZ/A=0,E TEST,T

EXIDY RELOZATING LINKING LOADER.

COPYRIGHT () 1920 EXIDY INC. VER 2

STARTING OFFSET Is @

*L MODUL1

BEG ADDR €100

END ADDR o010B
UNDEF SYM 01

*_ MODULZ2

BES ADDR @101
ENI} ADDR ©12A
LNDEF 3YM @0

*T
SYMBOL TABLE (IINDEF=%*%%%)

XXX oloc
*ETEST
TEZT.COM SAVED, RECS WRITTEN= o1

AS[IUMP TEST.COM

0000 D OC 91 D o o1 CD oC ot C3
0010 B7 A 20 01 SF OE 92 ES CD o5
00290 129 0D @A 54 45 5= 5S4 49 4E 47
00=0 00 00 00 00 00 00 00 00 00 00
9040 00 00 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 @0 00 00 00 00
0040 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00

ASTEST

TESTING
TESTING
TESTING
A

.1

21
23
00
00

@0

0o
00
00

21
Cc3
0e
00
00
00
0Q
06

~1
"F
"9
a0
00
00
00

00

57

58

PART III: DEVCNVRT

8. INTRODUCTION

DEVCNVRT is a CP/M compatible utility program that converts
cassette files created by the Exidy Development-PAC 1into disk
files accessible to CP/M development systems. When the
DEVCNVRT program is invoked from CP/M, a filename and filetype
given on the command line become the name and type of the newly
created disk file. Then, a cassette containing a Development-
PAC file is read into the Sorcerer elither under motor control,
or by manual control of tape pauses. The pauses are necessary
to allow time for each file block read from cassette to be
written to disk, without passing over blocks on tape. After
all blocks have been read in, the program inserts a CP/M end of
file character (cntl-Z) where the Development-PAC's end of file
character (cntl-C) was found, and closes the disk file. The
new disk file can be manipulated by CP/M assemblers and linkers
such as EXASM and EXLINK. Cassette files containing
DEVELOPMENT PAC assembly source (from the Pac text editor ED)
or object code (from the PAC assembler ASM) can be converted.

14 CONVERTING A FILE FROM CASSETTE TO DISK

To convert a Development-PAC cassette file to a CP/M compatible
disk file, follow these steps. For clarification, wuser input
is underlined.

After the CP/M A> prompt, enter DEVCNVRT in the command line,
following it with a space. Then type in the filename and
filetype, separating them with a period. This becomes the name
and filetype of the newly created disk file, as shown here:

A> DEVCNVRT FILENAME.ASM <Return>

If the filename and type are omitted, or if the filetype is not
.ASM .0BJ or HEX, an error message is displayed. Only assemby
(.ASM) or object (.0BJ, HEX) cassette files are supported.

After an acceptable filename and type are entered, the program
asks the user 1f he has cassette motor control. The user
responds by typing Y (for yes) or N (for no), as seen here:

DO YOU HAVE CASSETTE MOTOR CONTROL (Y/N)? Y

(Motor control requires the wuse of the Serial Cassette Data
Cable, DP 4005).

Then, a message is displayed, telling the user to rewind the
cassette. If the user has motor control, set the recorder to
play, hit any key and the file is automatically converted
without manual control of the cassette recorder motor.

15

59

REWIND CASSETTE. WHEN READY TO PLAY TAPE, HIT
ANY KEY.<any key>

If the wuser does not have motor control, having
only manual control, the following messages are
displayed:

MANUAL MOTOR CONTROL MUST BE USED.

STOP TAPE RECORDER (OR PAUSE) IMMEDIATELY
WHEN THE "STOP TAPE!!!" MESSAGE IS DISPLAYED.
TAPE MAY BE TURNED ON AT LEISURE WHEN

“PLAY TAPE." MESSAGE APPEARS.

REWIND CASSETTE. WHEN READY TO PLAY TAPE,
HIT ANY KEY.<any key>

Rewind Lthe <cassette tape to the beginning of the
file, and the message “PLAY TAPE" 1is displayed.
Start the vrecorder after this message is displayed.
When “STOP TAPE!!!" is displayed, THE CASSETTE PLAYER
MUST BE STOPPED OR PAUSED IMMEDIATELY UNTIL THE NEXT
"PLAY TAPE" ©PROMPT APPEARS. A few moments after the
cassette player 1is stopped, the "PLAY TAPE" message
should be displayed on the screen. The user does not
need to respond immediately and may press the PLAY
button to start the tape at his convenience. The
start/stop procedure 1is repeated for each disk/tape
block until the program is completed.

After the conversion is successfully completed, the
console displays the following message and returns to
CP/M.

SUCCESSFUL DISK WRITE

EXAMPLE RUN

The following are examples of console I/0 when using the
DEVCNVRT conversion program. Underlined information 1is
entered by the user.

A>DDEVCNVRT SAMPLE.ASM<Return>

EXIDY CASSETTE TO DISK FILE TRANSFER PROGRAM
FOR CASSETTES CREATED BY THE DEVELOPMENT-PAC.
VER. 1.0

DO YOU HAVE CASSETTE MOTOR CONTROL (Y/N)?Y

REWIND CASSETTE. WHEN READY TO PLAY TAPE,
HIT ANY KEY.<any key>

SUCCESSFUL DISK WRITE

60

A>DEVCNVRT SAMPLE.ASM <Return>

EXIDY CASSETTE TO DISK FILE TRANSFER PROGRAM
FOR CASSETTES CREATED BY THE DEVELOPMENT-PAC.
VER. 1.0

DO YOU HAVE CASSETTE MOTOR CONTROL (Y/N)?N
MANUAL MOTOR CONTROL MUST BE USED.

STOP TAPE RECORDER (OR PAUSE) IMMEDIATELY
WHEN THE "STOP TAPE!!!™ MESSAGE IS DISPLAYED.
TAPE MAY BE TURNED ON AT LEISURE WHEN

“"PLAY TAPE." MESSAGE APPEARS.

REWIND CASSETTE. WHEN READY TO PLAY TAPE,
HIT ANY KEY.<any key>

PLAY TAPE.

(or)

*x%k STOP TAPE!!!! *k#
SUCCESSFUL DISK WRITE

A>

16 ERROR MESSAGES

If an error occurs, one of the following messages 1s displayed
describing the error.

FILE NAME NOT GIVEN, OR FILE TYPE
NOT “ASM", "HEX", OR "OBJ".

This error occurs if the DEVCNVRT command line does not contain
a filename and filetype after DEVCNVRT, or if the filetype 1is
not ASM, HEX, or OBJ.

DISK IS FULL, WRITE INCOMPLETE.

This error occurs 1if the CP/M diskette does not have enough
room for the new file. The incomplete disk file is closed, and
control returns to CP/M.

TAPE CRC ERROR

This error results if 8-bit CRC generated during the cassette
write operation does not agree with the CRC generated during
the read back operation. This error 1Is usually the result of
an 1improper tone or volume setting on the tape recorder. Try
different volume and tone settings on your tape recorder.

APPENDIX A: EXASM Abstract Reference

A.1 EXASM call format

EXASM <sourcefile>[,<objectfiled][,<{printfiled])

A.2 Options

- Generate cross-reference.

- Listing to disk.

-~ "Ecology” or compressed listing
- Set form-feed option.

~ Suppress generated text.

-~ No listing or cross reference.
Listing to list device.

- No object output.

- Object output.

- No form feeds.

- List to console.

- Don't print warnings.

EHunozZzrxAommoQ
!

A.3 Pseudo-op syntax

A.3.1 Data Generation

DEFB/DEFM/DB : <label)> DEFB n[,n,n...]
<label> DEFW <expr>
<label)> DEFS <expr>

A.3.2 Source control
<label> IF nn

ENDIF
INCLUDE <filename[.<type>]>

Object control

{label> PSECT <opr>
<label)> ORG {expr>
<{label> END

<{label> NAME <(string>

A.3.3 Listing control

EJECT

TITLE

{/<options>]

61

PAGE X
LIST
NLIST

A.3.3.1 LIST and NLIST with operands: options:

G - Don't print text.

W - Don't print warnings.
E - "Ecology” (suppression of form feeds and ejects).
Examples:
LIST GW
NLIST GW

A.3.4 Symbol control

<label> EQU {expr>
<label)> DBEFL {expr)>

A.3.5 Linking Control

<label> GLOBAL <symbol)>

These three may be used in place of the GLOBAL
specify an external global symbol:

EXTERNAL, EXTERN, EXT

These four may be used in place of the GLOBAL
specify an internal global symbol:

INTERNAL, INTERN, INT, PUBLIC

You may use any of the forms interchangeably.

pseudo-op

pseudo-op

62

to

to

APPENDIX B: EXLINK Abstract Reference

A.1 EXLINK call format
EXLINK [<filel>][,<file2>][,<file3>]...[/options]

B.2 Offset for loading first module is determined by sum of:

A=XXXX where XXXX is the starting offset from call option
list

ORG YYYY (given in source module)

2222 (offset number) given in load command

B.3 Offset for loading subsequent modules is determined by:

ORG YYYY (given in source module)
2222 (offset address on command line)
Default: End address of previous module + [.

B.4 Interactive Mode Options

L [d:]<filename> [ZZZZ] Relocates file at optional starting
offset Z2222.
Prints current global symbol table.
Writes .COM file to drive d:.

or ~C Exits without writing .COM file.

O Mmoo

B.5 Batch Mode Options

A=XXXX

E Exits loader and writes a .COM file to
disk.

T Prints global symbol table, after

loading modules

APPENDIX C: DEVCNVRT Abstract Reference
C.l DEVCNVRT call format

DEVCNVRT FILENAME.ASM

63

EXIDY COMPUTER PRODUCTS
are produced under license by

5) COMPUDATA

COMPUDATA

Made in Holland

