
<

y?

_

EXIDY COMPUTER PRODUCTS
are produced under license by

Made in Holland

Z80 SOFTWARE DEVELOPMENT SYSTEM

VERSION 2.1-

April, 1980

Copyright (c) 1980, EXIDY, Inc

COPYRIGHT

Copyright (c) 1980 by Exidy Inc. All rights reserved. No part
of this publication may be reproduced, transmitted, trans¬
cribed, stored in a retrieval system, or translated into any
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of Exidy Inc., 390 Java Drive,
Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Inc. makes no representations or warranties with respect
to the contents hereof and specifically disclaims any implied
warranties of merchantibility or fitness for any particular
purpose. Further, Exidy Inc. reserves the right to revise this
publication and to make changes from time to time in the con¬
tent herof without obligation of Exidy Inc. to notify any per¬
son of such revision or changes.

TRADEMARKS

EXLINK, EXASM and DEVCNVRT are trademarks of Exidy Inc. CP/M
is a registered trademark of Digital Research.

TABLE OF CONTENTS

PART I. EXASM

1 INTRODUCTION . 01

2 DEFINITIONS . 02

3 OPERATION . 05

3.1 EXASM Call Format . 06
3.2 Call Options . 12

3.2.1 Cross reference only assembly . 14
3.3 Interrupts . 14

4 SYNTAX . 1*

4.1 Source code format .. 14
4.2 Delimiters . 14
4.3 Labels . 15
4.4 Expressions . 15

4.4.1 Constants .. 15
4.4.2 Expressions . 15
4.4.3 True and false . 17
4.4.4 Logical operators . 17
4.4.5 $. 17
4.4.6 Memory addresses . 18

4.5 Op codes . 18
4.6 Pseudo-ops . 18

4.6.1 Data Generation (DEFB/DEFM/DEFW/DEFS) . 18
4.6.2 Source Control (IF/END IF/INCLUDE) . 22
4.6.3 Object Control (PSECT/ORG/END/NAME) . 23
4.6.4 Listing Control (TITLE/EJECT/PAGE/LIST/NLIST) 24

4.6.4.1 LIST and NLIST with Operands. 24
4.6.5 Symbol Control (EQU/DEFL/GLOBAL/INT/EXT) 26
4.6.6 Linking Control (GLOBAL/INTERNAL/EXTERNAL 27

5 LISTING . 28

5. 1 Format . 28
5.2 Error Messages/Warnings . 28

5.2.1 ABORT . 28
5.2.2 MESSAGE . 29

5.2.2.1 Error Messages . 30
5.2.2.2 Warning Messages . 31

5.3 Example Listing .. 36

6 CUSTOMIZING EXASM . 40

6.1 Default Options . 37
6.1.1 Default Control Options (location 103) 37
6.1.2 Default List Control Options (location 104) .. 38
6.1.3 Page Length (location 105) 39
6.1.4 Line Length (location 106) 39

7 Z80 MACHINE INSTRUCTIONS . 40

PART II EXLINK

8 INTRODUCTION ... 4 2

9 OPERATION . 44

9.1 EXLINK Interactive Mode Commands . 44
9.1.1 *L . 44
9.1.2 *T.. 45
9.1.3 *E . 45
9.1.4 *Q . 45

9.2 Batch Mode Options . 46
9.2.1 A=XXXX [SSSS] . 46
9.2.2 E[D:][<fiiename>][.COM] . 46
9.2.3 T . 47

9.3 Other Features of EXLINK .. 47

10 SAMPLE RUNS . 48

10.1 Batch Mode Linking Example. 48
10.2 Interactive Mode Example... 51

11 ERROR MESSAGES . 52

12 EXAMPLE OF THE COMPLETE EXASM AND EXLINK.. 54

PART III DEVCNVRT

13 INTRODUCTION .. 58

14 CONVERTING A FILE FROM CASSETTE TO DISK . 58

15 EXAMPLE RUN . 59

16 ERROR MESSAGES .. 60

APPENDIX A: EXASM Abstract Reference . 61

APPENDIX B: EXLINK Abstract Reference . 63

APPENDIX C: DEVCNVRT Abstract Reference . 63

1

PART Is EXASM

1. INTRODUCTION

EXASM (TM) and EXLINK (TM) together provide a means of trans¬
forming a Z80 assembly language program into an executable CP/M
(TM) command program.

EXASM is a Z80 relocating assembler that recognizes standard
Zilog Z80 mnemonics, and a useful set of pseudo-ops. It sup¬
ports global symbols and assembles either relocatable or abso¬
lute modules. EXASM transforms the Z80 assembly language
source program into an Intel hex format object (.OBJ) file,
producing also, optionally a listing (print file).

EXLINK is a relocating linking loader which loads object files
into specified memory locations and then optionally saves them
as command programs onto CP/M disks.

It is not the intention of this manual to teach assembly langu¬
age programming, rather to explain the use of the assembler and
linking loader. Zilog's publication, Z80 Assembly Language
Programming Manual, . is an excellent reference, while the
Osborne & Associates book, Z80 Assembly Language Programming,
is good for learning the language.

NOTE

In all examples, underlines indicate operator input, and
a carriage return is assumed at the end of each command
line. As an example, here is how to transfer control
from the A drive to the B drive. After getting the A>
prompt, the operator types B: and a carriage return.
CP/M responds with the B> prompt. In this case, typing
B: (and the carriage return) is the only operator input.

A>JB£
B>

2

2 DEFINITIONS

Some terms must be defined to use EXASM properly.

MODULE

A unit of code produced by an editor, loader or assem¬
bler. Another word for a program or program section.

SOURCE MODULE (usual file type * .ASM)

A source module is an ASCII text file composed of
assembly language instructions—labels, op codes,
mnemonics, operands, comments, etc. Source modules are
created by editor programs, such as CP/M's ED, Exidy’s
EDIT or Exidy's Word Processor ROM PAC (TM). The
assembler assembles the file into one object module.
Lines are delimited by carriage return (ODH) or by
carriage return/line feed (ODH, OAH). EXASM supports
the tab character (09H) and interprets it as a
delimiter. The end of a source module is defined by the
SUB or EOF character (1AH). The maximum source line
length is the print line length minus 24; this is 108
characters as supplied by EXIDY (see 6.1.4 for print
line length). The source module is machine code
presented in a form readable by human beings.

OBJECT MODULE (usual file type = .OBJ)

This is a module produced by the assembler from the
source module. Any object module contains machine code,
(if relocatable, linking information), address and
relocating information, and checksum information—all
coded in ASCII. It is used by EXLINK. The format of
the object module is an extended form of Intel hex
format•

LOAD MODULE (usual file type = .COM)

A load module is a file consisting of the memory image
of machine code for one complete program, created by
EXLINK from one or more object modules and built in RAM.
The file type is .COM, since it can be loaded and execu¬
ted by using its name on the CP/M command line. Typing
the name of a .COM file (without its file type) loads
the program directly into the area beginning at 100H
(CP/Mfs TPA—transient program area) and executes it.
For this reason, EXLINK is used to relocate most object
files to location 100H.

SYMBOL
3

A symbol is an identifier of up to six characters (for
more on this, see 4.3, Labels) which represents an ad¬
dress or constant. It may be defined by an EQU state¬
ment or by use in the label field of a source statement,
or may be externally defined if declared in a GLOBAL
statement. The assembler constructs the symbol table
and the linker constructs the global symbol table. Sym-
bols may be local or global; if global, they may be ei¬
ther external or internal.

LOCAL SYMBOL

A local symbol is one defined and referenced by one mod¬
ule only, and is not accessible to other modules. No
record of any kind is made in the object module of a
local symbol.

GLOBAL SYMBOL

A global symbol is one appearing in the operand field of
linkage control type pseudo-ops. This set of pseudo-ops
consists of GLOBAL, EXTERNAL, EXTERN, EXT, INTERNAL,
INTERN, INT and PUBLIC. A global symbol is given global
definition in a source module. Any global symbol in a

source module appears in the corresponding object
module. Once all object modules are loaded by EXLINK,
all references to the global symbols of outside modules
(or external symbols), are resolved, assuming thefe are
no programmer errors in global symbol use. A global
symbol is defined in one module and that definition is
made available to other modules; the linker subsequently
supplies the needed reference points.

INTERNAL GLOBAL SYMBOL

A symbol declared global (by the GLOBAL, INTERNAL,
INTERN, INT or PUBLIC pseudo-ops) whose definition is
found within the module is said to be an internal global
symbol for that module. Its value is made known to all
other modules loaded with it by EXLINK. When an object
module is loaded by EXLINK, the internal symbol value is
placed in EXLINK's global symbol table. These values
must be addresses, not constants. That is, internal
symbols are always relocated. The internal symbol has a
value relative to the start of the module assigned by
the assembler. EXLINK relocates this to an abolute
address by adding the base address of the module within
the final linked load module.

EXTERNAL GLOBAL SYMBOL

A symbol, declared global (by the GLOBAL, EXTERNAL,
EXTERN or EXT pseudo-ops), which is not defined within a
module, is an external global symbol with respect to
that module. When this object module is linked with the

4

module where the symbol is an internal global symbol (that is,
defined and declared global, the reference to the symbol is
resolved. An external global symbol may never appear in an
expression with operators or as the operand of an EQU pseudo-op
in a source line.

POSITION INDEPENDENT

A program written so it may be placed anywhere in memory
and still run properly without change is said to be
position independent. Relocating information is not
needed in the object module.

ABSOLUTE

An absolute program is one written without relocating
information in the object module. A program is declared
absolute by using the assembler pseudo-op PSECT ABS . An
absolute program may or may not be position independent.
Usually such a program can reside only in one area of
RAM.

RELOCATABLE

A relocatable program is one without a PSECT pseudo-op,
or one that has been declared relocatable with the PSECT
REL statement. The assembled object file contains the
object data which requires relocation if the intended
execution base address is not the ORG value. Object
address references are stored as values relative to the
ORG value, as shown in the assembler listing. A
relocatable program is usually position dependent,
though not necessarily.

LINKABLE

An object module containing data about internal and
external global symbols is a linkable object module.
The loader uses this data to supply the absolute addres¬
ses in order to connect external references to internal
symbols in modules. A linkable program may be either
absolute or relocatable and may or may not be position
independent•

TWO PASS ASSEMBLER

EXASM is a two pass assembler, that is, an assembler
that scans twice each source module it assembles. Each
scan is called a pass. During the first pass values for
each symbol are determined and placed in a symbol table.

During the second pass, the assembler uses the symbol
table created during the first pass to decode operand
expressions into machine code. While assembling each
line of source code, the assembler counts with its pro¬
gram counter each byte of object code produced. If no
starting value is assigned by the ORG pseudo-op, then
EXASM assigns a starting value of zero. The assembler
also optionally suppresses creation of the object module
and optionally produces a listing, with or without cross
references specified, during the second pass. A linked
list within the object data is created in the second
pass for each external global symbol reference in the
module, and a dictionary of global symbols is written to
the object file. Diagnostic error messages are produced
at all times in the second pass.

EXASM recognizes the standard Zilog Z80 mnemonics and a
number of pseudo-ops (assembler directives). Assembly
source modules are usually stored on disk under the file
type .ASM. You may use EXASM to assemble files having
other file types, so_ long as these have the same format
as an .ASM file. (You could, for example, assemble di¬
rectly a file created by Exidy's Word Processor ROM PAC,
without the necessity of changing its file type from
•WPF to .ASM.) EXASM assembles any file having the
proper format (written, that is, in Z80 assembly langu¬
age) into an object file. It also optionally suppresses
or outputs an assembly listing (a print file) on the
user’s printer or on a CP/M disk. The object output of
the assembler is a file in ASCII hexidecimal format with
file type (if not otherwise specified) .OBJ, as:

FILENAME.OBJ

where FILENAME is the same name as that of the .ASM
file. (The name of the file may optionally be specified
to be different from that of the source file, as you
will see later in the examples.)

Z80 source code input to EXASM is assumed to be a CP/M
disk file generated by a CP/M text editor or by Exidy’s
Word Processor ROM PAC and disk interface.

3 OPERATION

The EXASM programs are used on a single or dual disk drive,
such as Exidy's Display Disk System or Floppy Disk Subsystem.
After connecting the disk drive, do the following:

Turn on the Sorcerer and all peripheral devices, inclu¬
ding the disk drive unit.

Boot the CP/M system diskette. See the Exidy publica¬
tions EXIDY CP/M and Display Disk Unit Operation Manual
or Floppy Disk Subsystem Operation Manual.

Insert a CP/M system diskette containing the EXASM
program and the file to be assembled into the disk drive
and type the command listed in the next section for both
EXASM and the file to be assembled existing on the same
disk. EXASM and the file to be assembled may be on dif¬
ferent disks. Examples are given in the next section.
If EXASM is on the B drive and you wish to assemble your
file on the B drive, you can get into the B drive, after
logging onto the A drive, by typing:

A>E .
B>

3.1 EXASM Call Format

A>EXASM <sourcefile>[,<objectfile>] [,<printfile>] [/<options>]

<sourcefile>, <objectfile> and <printfile> may each have these
properties: The name of the file may be any valid file name,
up to eight characters, plus optional file type of up to three
characters (and separated from the file name by a period). If
no file type is specified, the type defaults to .ASM for the
source, .OBJ for the object, and •PRN for the print file. If
no file names are specified for <objectfile> and <printfile>,
their names default to the same as (sourcefile>• The file name
may be preceded by a drive identifier (any valid CP/M drive,
such as A: or B:). If no drive is specified, EXASM defaults to
the drive currently logged on. (sourcefile> is assumed to be
located on the currently logged drive, unless otherwise
specified (by preceding the name with a valid CP/M drive). If
you specify only the drive name for <objectfile> or
<printfile>, the output is directed to the specified drive.
(Do this only if output is to go to other than the drive
currently logged on.)

Delimiters should be used as shown. That is EXASM must be
followed by at least one space, and, if <objectfile> and
<printfile> are specified, items should be separated by commas.
If <printfile> is specified but <objectfile> is not, two commas
must be placed after (sourcefile>•

Options are specified by the use of a slash (/) followed by a
string of characters consisting of one or more options.
Options are not separated by delimiters. Options are explained
in the next section.

In each of the following examples, in response to the prompt of
the currently logged disk you type a command line following the
prompt. So, if the A drive is currently "up" and you wish to
assemble MYFIL.ASM:

7

Example:

Bef o
A dr

Now,

re assembly, thi
ive :

A> DIR
A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL ASM

use EXASM.

is what you have on the disk in the

A>EXASM MYFIL

EXASM searches the directory of the disk in the A drive
for a file named MYFIL.ASM and if it does not find the
file, it outputs the message SRC INPUT FILE NOT FOUND.
EXASM is interested only in MYFIL.ASM and pays attention
to no other MYFILs (MYFIL.HEX or MYFIL.COM, for instance,
or even MYFIL with no file type). Before beginning assem¬
bly, EXASM always signs on, thus:

EXIDY Z80 Assembler - version x.x
Copyright (C) 19xx by EXIDY INC

If MYFIL.ASM exists and is an error-free Z80 program, this
is what you see on the screen after the assembly is com¬
plete and following the sign-on message:

PASS 2

ERRORS=0000

WARNINGS=0000

We will give examples later of error and warning conditions.

Look at the directory (with the CP/M DIR command) , and you
find that two new files have been produced on the A disk;

A> DIR
A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL ASM
A: MYFIL OBJ
A: MYFIL PRN

if MYFIL .OBJ or
EXASM deletes them and creates new versions.

8

Example:

A> EXASM MYFIL.ASM

If MYFIL.ASM exists on the A drive, then the results are
precisely the same as those of the previous example.

Examples:

A> EXASM B:MYFIL

or

A> EXASM B:MYFIL.ASM

If MYFIL exists on the B drive, then it is assembled as
before, producing these two new files on the A drive:

A: MYFIL OBJ
A: MYFIL PRN

Examples:

B>EXASM MYFIL

or

B>EXASM MYFIL.ASM

EXASM searches the directory of the B drive for MYFIL.ASM
and, if it exists, assembles it, producing on the B drive

the object and print files.

B>DIR
B: EXCOPY COM

B: EXASM COM

B : EXLINK COM

B: MYFIL ASM

B: MYFIL OBJ
B: MYFIL PRN

9

Example:

A>EXASM MYFIL.WPF

EXASM looks in the direc
named MYFIL.WPF and, if it
these object and print file

A>D IR
A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL WPF
A: MYFIL OBJ
A: MYFIL PRN

of the A drive for a fil<

Example

A> EXASM MYFIL,PR0G1,PR0G2

Assuming that
assembles it ,

MYFIL•ASM
producing

exists
object

specified names, and the default types.

on the A drive, EXASM
and print files with the

A>DIR
EXCOPY
EXASM
EXLINK
MYFIL
PROG 1
PR0G2

COM
COM
COM
ASM
OBJ
PRN

Example:

A> EXASM MYFIL.WPF,PROG1.XXX,PR0G2.YYY

Assuming that MYFIL.WPF exists
assembles it , producing object
specified names and types •

A>DIR
A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL WPF
A: PROG 1 XXX
A: PR0G2 YYY

on the A drive, EXASM
and print files with the

10

Example :

A>EXASM B:MYFIL,PROG1

EXASM assembles MYFIL.ASM from the B drive, producing two
new files on the A drive (and leaving the B drive unchan¬

ged) :

A>DIR B:
B: EXCOPY COM

B : EXASM COM

B : EXLINK COM
B : MYFIL ASM

A>DIR
A: EXCOPY COM

A: EXASM COM

A 2 EXLINK COM
A: PROG 1 OBJ
A: MYFIL PRN

Example:

A>EXASM B:MYFIL,,PR0G2

EXASM assembles MYFIL.ASM from the B drive

A>DIR B:
B : EXCOPY COM

B : EXASM COM
B: EXLINK COM

B : MYFIL ASM

A>DIR
COM A: EXCOPY

A: EXASM COM

A: EXLINK COM

A: MYFIL OBJ

A: PR0G2 PRN

produc ing :

The two commas indie
<objectfile>, so the
file>, with type .OBJ a
A. A new file name i
created as specified,
type.

ate no file name sped: f ied f
name defaul ts to that of < sou rc

nd assembled to the logged on d is

s given for <printfile>, so i t

wit h the default to the • PRN f i

r

9

s
e

11

Example:

A> EXASM MYFIL..XXX,.YYY

EXASM assembles MYFIL.ASM, producing object and print
files with the default names and specified types.

A>DIR
A:' EXCOPY COM

A: EXASM COM

A: EXLINK COM

A: MYFIL ASM

A: MYFIL XXX

A: MYFIL YYY

Example:

You may wish to assemble a file from one drive and send
the <objectfile> and <printfile> to another drive. Before
beginning EXASM, this is what you have on each disk:

A>DIR
A: EXCOPY COM
A: EXASM COM
A: EXLINK COM
A: MYFIL ASM

A>DIR B
B: EXCOPY COM
B: EXASM COM
B: EXLINK COM

A>EXASM MYFIL,B:,B:

After the EXASM operation, this is what you have:

A>DIR
A: EXCOPY COM

A: EXASM COM

A: EXLINK COM

A: MYFIL ASM

A>DIR B:
B: EXCOPY COM
B : EXASM COM
B: EXLINK COM

B: MYFIL OBJ

B: MYFIL PRN

12

3.2 Command options

Options are specified with a slash (/) followed by a list of
single characters, according to the following table. Indivi¬
dual options are not separated by delimiters. If they con¬
flict, the last-named option takes precedence.

C - Generate cross-reference (explained later).

D - Listing to disk. This is a default option and need
not be specified unless you have turned off the listing
option (bit 0) in location 103 (see Customizing EXASM).

E - "Ecology" or compressed listing—paper-saving
option. Page ejects are not performed. Thus, the
pseudo-op EJECT is ignored, as is the form-feed normally
associated with TITLE and that generated at the end of
the listing.

F - Set form-feed option. This option is used for
printers which can handle an ASCII form-feed character.
Since this is a default, you need not use it unless you
have turned off this default in location 105 (see Custo¬
mizing EXASM). The opposite of this option is option S.

G - Suppress generated text (beyond four bytes) of
DEFB/M/W. You can make this a default option (see
Customizing EXASM, where a full explanation of this
function is given).

K - No listing or cross reference. Suppression of print
file.

L - Listing to list device. Print file goes to the CP/M
LST: device, usually a Sorcerer Centronics-compatible
parallel printer device.

N - No object output. Does not produce an object file.
This has no effect on listing or cross reference. This
is useful for a fast syntax check of source.

0 - Object output (default). Use if bit 2 of location
103 has been turned off (see Customizing EXASM).

S - No form feeds. Uses carriage return/line feeds
instead. For printers that do not support form feed.
This can be made a default (see Customizing EXASM), but
is not supplied that way in the distributed version.

T - List to console, CP/M CON: device.

W - Don’t print warnings. This too can be made a
default •

13

Note that diagnostic messages always go to the console if

listing is suppressed.

Examples:

d>EXASM SOURCE

produces

Source - d:SOURCE.ASM
Object = d:SOURCE.OBJ
Listing* d : SOURCE.PRN

where d = any valid CP/M drive.

Default options:

Listing will have form feeds. Generated text and
warnings will be printed. Object and listing (with

no cross reference) go to disk.

d>EXASM SOURCE,OBJECT,PRINT/SW

produce s

Source = d:SOURCE.ASM
Object * d:OBJECT.OBJ
Listing* d:PRINT.PRN

Options:

S - Listing will have no form feeds.
W - Warnings will not be printed.

d>EXASM B:SOURCE.BAK,,PRINT.ECH/N

produces

Source * B:SOURCE.BAK
Object * no object generated (N option)

Listing* B:PRINT.ECH

d>EXASM SOURCE,B:/LC

produces

Source * d:SOURCE.ASM
Object * B : SOURCE.OBJ
Listing* to list device

Cross references will be included in listing.

14

For a quick syntax-check assembly use the options /NK to pro¬
duce no object or listing, but just output diagnostic messages
to the console.

3.2.1 Cross reference only assembly. The option string
/LKC causes the cross references to list on the printer.
/KC causes the cross references (only) to write to the
specified disk file.

3.3 Interrupts

The operator may abort assembly with CONTROL C. This produces
the message:

* ***ABORT ERROR = Z, OPR REQUESTED ABORT ************

CONTROL S stops assembly (during Pass 1 or Pass 2) until anoth¬
er character is struck. Use this with the T option to pause
console output, which otherwise prints too fast to read, or,
perhaps, to momentarily pause printer listing. (Be sure to
hold the key down until it is acknowledged.)

4 SYNTAX

An assembly language program or a source module is made up of a
sequence of source lines comprised of delimiters'1, labels, op
codes, pseudo-ops, operands and comments in a sequence which
defines the user’s program. There follows a discussion of the
syntax of the EXASM assembly language.

4•1 Source code format

The source code format requires the use of delimiters, to sepa¬
rate labels, op codes, pseudo-ops and operands from each other.

The source code line format is:

[label] <op code> [<operand>] [,operand] [;comment]

Where expressions within square brackets ([]) are optional,
while those within angle brackets (<>) must be supplied accor¬
ding to the conventions of Z80 assembly language programming.

4.2 Delimiters

Delimiters are one or more ASCII commas or spaces used to sepa¬
rate labels, op codes, operands, and pseudo-ops from each
other. Carriage returns and semicolons are terminal delimi¬
ters, that is, they terminate the source line to be parsed by
the assembler.

15

4.3 Labels

One or more characters compose a label. However, the assembler
recognizes only the first six characters of a label. Control
characters and the following ASCII characters cannot be used in
a label :

Also, the first character of a label cannot be a decimal num¬
ber. All labels must begin in column 0 unless followed by a
colon (:). A label may be used on any line in the source mod¬
ule (with the exception of ENDIF)• The value assigned to the
label, if it is not before an EQU pseudo-op, is that of the
current program counter.

4.4 Expressions

4.4.1 Constants. Constants must be in the range 0 through
OFFFFH. They may take these forms:

DECIMAL - (default); any number with no qualifier
is assumed by the assembler to be deci¬
mal. Numbers may optionally be qualified
with a D. Examples: 34, 183D.

HEXADECIMAL - must begin with a number (0-9) and end
with H. If the first digit is a letter
(A-F), a leading zero is added. Exam¬
ples: 20H, 0A1DH, OFFFAH.

OCTAL - must end with Q or 0. Examples: 327Q,
1770.

BINARY - must end with B. Example: 01101010B.

ASCII — must be enclosed in single quotes.
EXASM converts them to ASCII hex code.
Example: 'A1 (- 41H).

4.4.2 Expressions. EXASM accepts many expressions in the
operand field of a statement. Expressions are evaluated from
left to right according to this hierarchy. (0 is the highest
in this hierarchy, that is, it has the tightest binding power.)

16

operation operator hierarchy

equal to = or .EQ. 0

signed less than < 0

signed greater than > 0

signed less than or equal to O or »< 0
signed greater than or equal to >= or =*> 0

not equal X or <> or .NE. 0

unsigned less than .LT. 0

unsigned greater than .GT. 0
unsigned less than or equal to .LE. 0
usigned greater than or equal to .GE. 0

reset overflow .RES. 0

unary plus + 1

unary minus (two's complement) - 1

logical NOT (one's complement) .NOT. 1

multiplication * 2

division / 2

addition + 3

subtraction 3

logical AND • AND • 4

logical OR .OR. 4

logical XOR .XOR. 4

logical shift right . SHR. 4

logical shift left .SHL. 4

modulus function (remainder) .MOD. 4

(Expressions within parentheses are evaluated first, so you may
use parentheses to change the order of expression evaluation.)

Examples:

In this expression:

3+2*4

first 2*4 is evaluated, then it is added to 3. If you
wish to change the order, so that first 3 is added to 2,
and then the result multiplied by 4, use parentheses,

thus :

(3+2)*4

17

In this expression:

.NOT.X.AND.Y

First the expression .NOT. X is evaluated, and then that
is ANDed with Y. That is, the expression is evaluated as

if it were written:

(.NOT.X).AND.Y

In this expression:

A-B.OR.OD

First the expressions A=B and OD are evaluated, and then
the result of A=B is ORed with the result of C“D. That
is, the expression is evaluated as if it were written:

(A=B) .OR. (OD)

In this expression:

.NOT.A<B.AND.A+4/B

First A<B is evaluated, then .NOT. A<B. Then 4/B is
evaluated and this added to A. Then the first expression
is ANDed with the second. That is, the expression is
evaluated as if it were written:

(.NOT.(A<B)).AND.(A+(4/B))

4.4.3 True and false. For expression evaluation, the value of
true is T, false, 0. (Note that the IF pseudo-op interprets

any non-zero value as true.)

4.4.4 Logical operators. .RES. unconditionally resets any
overflow error in an operand expression. The shift operators
shift their first argument right or left by the number of bit
positions given in the second argument. Zeros shift into
vacated bit positions. The negative (two's complement) of an
expression may be formed by preceding it with a minus sign.
The one's complement of an expression may be formed by
preceding it with the .NOT. operator.

4.4.5 £. The symbol $ represents the value of the program
counter of the current instruction. In relative addressing,
the program counter must be subtracted from the label if a
branch is to be made to the label address.

Example:

JR LOOP-$

jumps relative to label LOOP.

18

For a JK on <condition> or a DJNZ the assembler issues an out

of range (R) error if and only if the operand expresssion
evaluates to >127 or <-128. This introduces the anomaly that
JR LOOP is legal a^ far as the assembler is concerned if the
address of LOOP is <128. That is, if the address of LOOP is
at, say, 0, and at address 1000H is the instruction JR L00P-$,
even though the jump exceeds 127 bytes, the assembler will not
catch the error. But, on execution, the program will not make

the jump to LOOP.

4.4.6 Memory addresses. Enclosing an expression completely in
parentheses indicates a memory address. In instructions such
as LD A,(nn), where nn is a literal address, an expression
consisting of symbols and operators may be used as the literal
address within the parentheses.

4.5 0_p codes

That part of the source instruction that specifies the
operation to be performed on the operands is called the op
code. There are 74 op codes, 25 operand key words and 643
legitimate combinations of op codes and operands in the Z80
instruction set. The full set of these op codes is summarized
in the Z80 CPU Technical Manual and fully described in the Z80
Assembly Language Programming Manual, referred to earlier.
Both are published by Zilog Publications, Zilog, Inc.,
Cupertino, California. (See Section 7 for a summary of the op

codes•)

4.6 Pseudo ops

Pseudo-ops do not generate machine instructions; instead, they
direct the assembler to do something. EXASM recognizes several
pseudo-ops which appear in the op code field of a source
statement. Labels for these source lines are optional for all
pseudo—ops except two (EQU and DEFL). Pseudo—ops do not
necessarily generate object code, but can reserve bytes or can
cause certain values to be loaded into certain bytes.
However, pseudo-ops always cause some action in the assembler.
The assembler recognizes these pseudo-ops:

4.6.1 Data Generation

DEFB/DEFM/DB - define the contents of a byte or bytes located
at the current program counter address. DB, DEFB and DEFM are
synonymous. Here is the format:

<la be1> DEFB n[,n,n...]

where n is an eight bit value that may be an expression, or a
string. DEFB will not generate more than 255 bytes of data.
If the value of the expression is greater than eight bits, that
is, >255 or <-128, a warning is flagged.

19

Example:

CR
DEFB 3
EQU ODH
DEFB CR

;generates byte of 3
;defines CR
;generates a byte of CR
;(defined as ODH)

Multiple operands may be used, separated by delimiters.

Example:

DEFB •HI1,233/2+4,1I1'M HAL1,168

Note the use of two apostrophes in "I’M.” Two contiguous apos¬
trophes embedded in a string expression generate the ASCII code
for one apostrophe. This convention is used because a single
apostrophe is construed by the assembler to be a string delim¬
iter

Example:

DEFB 1, , ,2 , ,3 , ,4 , , ,5

is the same as:

DEFB 1,2,3,4,5

which shows that multiple delimiters are accepted, although one
has the same effect.

HIMSG: DEFM 1 HI! 1 ;picks up message HI!
;and stores it

As previously explained, if you want to put quotes into the
message, use the apostrophe key twice.

Example

QUOTE: DEFM 'HE SAID ,fHI!,,,

This produces: HE SAID 'HI!'

There is a simple short-hand way of defining multiple blocks of
bytes using DB instructions. These are called ("reps," for
repetitions of code) and are used within angle brackets. Sup¬
pose you wished to define these bytes:

This is three l's, six 5's and four 10's. You could do it this
way :

DEFB <3,1,>,<6,5,>,<4,10,>

20

Note that the trailing comma must be present within each pair
of brackets. These may be nested up to five deep. A general
form for this multiple usage is:

<label> DB <n,W,[<o,X,>,][<p,Y,[<q,Z,>,]>,]...>

where n, o, p and q are number of iterations and W, X, Y and Z
are numeric literals (any one of which could also be an alpha¬
numeric literal if enclosed in apostrophes, as 'W' or 'X').
Notice that each iteration has a trailing comma which must be
present. A few assembled source statements (including three
that cause errors) show this use:

EXIDY Z80 ASSEMBLER V x.x PAGE • ADDR OBJECT ST #

0000 00000000
00

0007 DEFB <5,0 , >

000E 00484901
01004849
01010048
49010100
48490101

0008 DEFM <4,0,'HI' ,<2,1 , > , >

0054 46524F 47 0011 DB <3,'FROGS',<2,'TOADS' ,> , 'CICADA' ,;
53544F41
4453544F
41445343
49434144
4146524F
4753544F
41445354
4F414453
43494341
44414652
4F475354
4F414453
544F4144
53434943
414441

' 0 11A 0018 DEFB <257,0 ,>
* * * * ERROR CODE - H, REP ERR **

’ 011A 0019 DB <130,0,1>
* *** ERROR CODE = G, UNBALANCED REP (’
' 011A 0020 DEFM <1[<i ,<i ,<i ,<i, <i,o, >,>,>,>,>,>
**** ERROR CODE = H, REP ERR **

The first statement, DEFB, produces in the object code five
bytes of 0: 00 00 00 00 00.

The second statement, DEFM, produces four times the following:
one byte of zero followed by two bytes of "H" and "I” followed
each time by two bytes of 1, that is:

21

0,11,1,1,1,0,11,1,1,1,0,11,1,1,1,0,11,1,1,1

The third statement, DB, produces three times the word "FROGS,"
followed each time by two "TOADS" and one "CICADA," thus:

FROGSTOADSTOADSCICADA
FROGSTOADSTOADSCICADA
FROGSTOADSTOADSCICADA

The first error is caused by trying to generate more than 255
bytes of code. The second by leaving off the trailing comma.
(If the comma were added, however, an H error would be caused
by again trying to generate more than 255 bytes of code.) The
last error is caused by nesting too deep.

Only the first four bytes of the object code are shown in the
assembly listing when you use the G option with DB/DEFB/DEFM.

DEFW - defines the contents of a two-byte word. The least
significant byte of the value nn is loaded at the program
counter address. The most significant byte is loaded at
program counter plus one. These two bytes together comprise
what is termed a "word," having this format:

<label> DEFW <expr>

where <expr> is a sixteen bit value or label.

PBFR DEFW BFR

DEFW supports multiple operands

Example :

;The least significant
;byte of the value of
;BFR is loaded into the
;byte pointed to by
;PBFR and the most
significant byte is
;loaded into PBFR plus
; one.

separated by single commas.

DEFW 1,SYM,XSYM,27+3/455,SYM-12,1HIf

DEFS - defines a space of RAM without initalizing it with
values. This pseudo-op reserves <expr> bytes of memory
starting at the current program counter value. Here is the
format:

<label> DEFS <expr>

where <expr> is a sixteen bit value or absolute expression. A
label used in the operand field of a DEFS statement must be
defined before the DEFS statement appears.

200 jreserve 200 bytes of
; s torage.

BFR DEFS

22

The DEFS nn statement is the same as an ORG $+nn statement,
where $ is the value of the program counter. That is, these
two statements produce the same amount of space:

DEFS 100

and

ORG $+100

4.6.2 Source control

IF - defines conditional assembly. If the expression nn is
true (non-zero), the IF pseudo-op is ignored. If the
expression is false (zero) the assembly of subsequent
statements up to the matching ENDIF statement is disabled as if
it were not in the source module. The IF pseudo-op cannot be
nested. Here is the format:

<label> IF nn

where nn is a sixteen bit value.

ENDIF - signals the end of a conditional assembly and reenables
assembly of subsequent statements. Here is the format:

ENDIF

Example:

NOASM EQU 0
IF NOASM
DEFM •
ENDIF

'HI THERE'

As long as NOASM has value 0 (false), nothing from the IF
statement to the ENDIF statement assembles. That is, in this
case, the DEFM statement is not assembled. If NOASM has a
value other than 0 (that is, it is true), then assembly does
not skip to the ENDIF statement, and statements after the IF
statement are assembled. So if the 0 in the EQU statement is
changed to a 1, then the DEFM statement is assembled.

INCLUDE - allows source statements from another input file to
be included within the body of the given program. If the
INCLUDE file cannot be properly opened, then assembly aborts.
The source module to be included must not end with an END
pseudo-op (because this would terminate assembly). The INCLUDE
pseudo-op may not be nested.

INCLUDE <filename[.<type>]>

where <filename> may be up to eight characters and <type> may
be up to three letters. If not specified, <type> defaults to
.ASM.

23

4.6.3 Object control

PSECT - defines a program section as absolute or relocatable.
If used, this pseudo-op should appear before any source lines
can be assembled into object code and should appear only once
in any source module. If not included in a source module, the
module is assumed relocatable. It has the following format:

<label> PSECT <opr>

where <opr> is either ABS (for an absolute module) or REL (for
a relocatable module).

ORG - sets the program counter to the value specified. When
used in an absolute module before any source code is assembled
into an object code, ORG determines the starting address for
the program. In a relocatable program, ORG provides an offset
to the base address given when loaded. There may be more than
one ORG pseudo-op in a source module. If a source module does
not contain ORG pseudo-ops, the program counter is set to zero
at the beginning of the assembly. It has the following format:

<label> ORG <expr>

where <expr> is a sixteen bit value or expression which is Pass
1 defined.

<label> ORG 200H ;this sets program
jcounter to 200H

END - defines the last line of the program or module in the
following format:

<label> END

NAME - defines the name of the program (source and object).
The name is placed in the heading of the assembly listing and
in the first record of the object module. If a NAME pseudo-op
does not appear in the module it defaults to six blanks. As
with all symbols, NAME may be one to six characters in length.
Here is the format:

<label> NAME <string>

Here, up to six characters can define the name of the program.
If longer than six characters,
first six characters.

then it is truncated to the

NAME MYPROG ; the title MYPROG i s
; now placed in the
;assembly listing and
;in
; the

the first record
object module.

o f

24

4.6.4 Listing control

Listing control (assembler directives) are pseudo-ops modifying
the assembly listing format. They are not printed with the
assembly listing, but are assigned statement numbers. The
following assembler directives modify the assembly listing
format:

EJECT - causes a printer to eject a page of a listing.

TITLE - causes a printer to eject a page and prints a heading.
It has the following format:

TITLE s

where s is a string of ASCII characters whose length may not
exceed the default line length minus 53. (That is, a standard
132 character print line allows up to 79 characters in the
title.) Anything beyond that length causes this warning
message:

** WARNING CODE * H, TITLE TOO LONG ***********

The string s need not be enclosed within quotes.

PAGE - causes the next page number in the heading to be set to
the value specified. It has the following format:

PAGE x

where x is a value of up to four decimal digits.

LIST - causes an assembly listing to begin.

NLIST - causes an assembly listing to stop until the next LIST
directive is found (if any).

LIST and NLIST allow optional activation and deactivation.
(See Customizing EXASM.)

4.6.4.1 LIST and NLIST with operands. You may use optional
character strings as operands with LIST and NLIST. If you do
not use options, then NLIST causes the listing to suspend until
the next LIST is encountered. If you use the options, then
these two function slightly differently. Rather than stopping
the listing, NLIST causes option disable. Rather than resuming
listing, LIST causes option assertion. These options alter
listing. Options may be strung together. These are the
options:

G - Don’t print text.

W - Don’t print warnings.

E - "Ecology" (suppression of form feeds and ejects).

25

Examples :

LIST GW
NLIST GW

Example:

EXAMPL
ADDR OBJECT

EXIDY Z80 ASSEMBLER V 2.1 PAGE
ST // SOURCE STATEMENT

'0000 49462054

'0025 54484953
2053484F
554C4420
4C495354
20544845
204F424A
45435420
454E5449
52454C59

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010

NAME

LIST
DEFB

EXAMPL

G
' IF THE

; DO NOT LIST GENERATED
OBJECT FOR THIS LISTS,

ONLY FIRST FOUR BYTES
LIST

NLIST
DEFB

TEXT
TROUBLE'
SHOULD

LIST GENERATED TEXT
'THIS SHOULD LIST THE OBJECT ENTIRELY'

0011 ;ALL TEXT GENERATED SHOULD
0012 ; LIST IN EXTRA LINES
0013 i
0014 LIST w ;DISABLE WARNINGS
0015 I

' 0049 01 0016 DEFB 10 1H ;SHOULD GIVE NO OVERFLOW WARN
0017 I
0018 NLIST W ;ENABLE WARNINGS • 0019 1

' 004A 01 0020 DEFB 1 0 1H ; SHOULD GIVE OVERFLOW WARNING
** WARNING CODE - V, OVERFLOW ***** ***********************

0021 >
00 2 2 END

ERRORS-OOOO

WARNINGS-0001

Here, the statement LIST G causes assertion of the option. The
option in this case is to not list generated text, so LIST G
cuts off text after the fourth byte, as you can see by the
object code associated with statement 0004. With the statement
NLIST G, the option is suppressed, and text is generated as
usual, as seen in the object code for statement 0010.

26

4.6.5 Symbol control

EQU - assigns a value to a label. The label cannot be defined
by an EQU pseudo-op or by appearing in the label field of
another source statement in the source module. If a global
symbol is defined by an EQU (as seen below), then the value of
the global symbol is relocated when linked even though it
appears as a constant in the EQU. Here is the format:

<label> EQU <expr>

where <expr> is the value.

Example:

CONST EQU 7 ;The value of CONST is 7

Labels used in the operand field of an EQU statement must be
defined in previous source code. Thus, the following three
statements would not be permitted:

A EQU B
B EQU C
C EQU OFFFH

however, are valid :

C EQU OFFFH
B EQU C
A EQU B

DEFL - defines a label. It sets the value of a label to <expr>
and may be used repeatedly for the same label within a module.
DEFL is similar in function to EQU but can be multiply used for
a particular label. Here is the format:

<label> DEFL <expr>

where <expr> is a sixteen bit value or expression.

Example:

CURNBR DEFL 0

CURNBR DEFL 1

;the value of current //
;is zero for this part
;of the assembly

;the value is now one
;in this part of the
;a s sembly

27

4.6.6 Linking Control

The following pseudo-ops are used to declare a
as global and identify the symbol as internal or external
GLOBAL pseudo-op is the historical ancestor of the
INT/EXT-type pseudo-ops.

symbol's scope
The

other

The INT/EXT method of symbol reference gives the advantage of
error checking for external labels which are accidentally
locally defined. If also checks that internal names are

spelled correctly.

If a symbol is referenced in a module and is not defined in
that module, it must be an external symbol that can be found in
a global statement in another module. Conversely, if the
global symbol is defined in the module, then it is an .internal

symbol. Here is the format:

<label> GLOBAL <symbol>

Example:

GLOBAL XSYM ;This declares XSYM
; global

In other assemblers, the GLOBAL pseudo-op is the only pseudo-op
used to specify both internal and external global symbols. It
may also be so used In EXASM. Whereas elsewhere no
differentiation can be made between global externals and
internals, here the INT/EXT pseudo-ops may be used in place of

GLOBAL.

These three may be used in place of the GLOBAL pseudo—op to
specify an external global symbol:

EXTERNAL, EXTERN, EXT

These four may be used in place of the GLOBAL pseudo—op to

specify an internal global symbol:

INTERNAL, INTERN, INT, PUBLIC

You may use any of the forms interchangeably.

The advantage of using these ops is that error checking is
performed. Here are examples, together with their associated

error messages:

EXT XSYM
***** ERROR CODE = J, EXT LOCALLY DEFINED *******************

INT ISYM
***** ERROR CODE * K, INT NOT DEFINED ***********************

28

5 LISTING

5•1 Format

Print file headings look like this:

<name> <title> EXIDY Z80 ASSEMBLER version x.x PAGE n
ADDR OBJECT ST # SOURCE STATEMENT

1. The first six characters are the name. They come from
the NAME statement.

2. Three blanks follow.

3. Then comes the TITLE (which must conform to TITLE
length limitations, described in 4.6.4).

4. Then follows the assembler message.

5. The last item on the first line is the page number.
This number is the current page count, unless changed by
the PAGE pseudo-op (4.6.4).

6. On the next line are the titles for address, object
code, statement number, and source statement.

An apostrophe to the left of an address means that address is
relocatable. An apostrophe after the object code means it will
be relocated as needed by EXLINK. A trailing asterisk after
the object code signifies an external global reference.

See section 5.3 for example listing.

5.2 Error Messages

When an error occurs during assembly, it either causes an abort
error condition or generates an error message in the listing.
All error messages are designated by a single alpha character.
Assembler errors are one of the following types:

5.2.1 ABORT. An error stopping the assembly of a program or
module. There are three abort errors. When either occurs,
control returns to CP/M with one of these messages output to
the console:

****ABORT ERROR - Z, OPR REQUESTED ABORT **********************

This occurs when the operator presses CONTROL C during
assembly•

****ABORT ERROR - F, SYMBOL TABLE FULL ************************

The symbol table is full, indicating more symbols have been
defined than the symbol table can accommodate.

29

****ABORT ERROR - Y, SRC/PRN/OBJ FILES SAME *******************

The command specified the same name for two or more files. For
example, this command would cause the error:

A>EXASM A.ASM,A.ASM

5.2.2 MESSAGE

An error or warning that does not stop the assembly of a prog¬
ram or module produces a message that prints in the listing
(print file) inserted immediately following the incorrect
statement. A single letter abbreviation represents one of
these messages. These messages appear on the console together
with the statement that caused the problem, as:

•0067 0048 LC (HL) ,A
***** ERROR CODE ■ 0, OPCODE ********************************

and

'006A 1140F4 LD DE,0F440H; STARTING ADDRESS TO OUTP
** WARNING CODE - T, TRUNCATED LINE ************************

They also appear at the appropriate place in the listing.

5.2.2.1 ERROR MESSAGES

A - UNBALANCED PARENS. The number of left parentheses
must equal the number of right parentheses.

B - INVALID OPERATOR. An operator not allowed by the
assembler exists in an expression. This usually refers to
a trailing operator.

C - EXPR TOO COMPLICATED. The expression is too compli¬
cated for the assembler to evaluate.

D - INVALID DIGIT. An operand in the source statement is
a number with an unallowable digit or character.

E - INVALID EXTERNAL. An external symbol is used in an
expression with operators, as the operand of an EQU or
DEFL pseudo-op or as the operand requiring an eight bit
value.

G - UNBALANCED REP Repetition symbols (left
and right angle brackets) not balanced.

H - REP ERR. More than 256 bytes of code generated, or
repetitions nested too deep.

I - INVALID OPERAND. An invalid operand or combination of
operands exists for this op code.

30

J - EXT LOCALLY DEFINED. An external global symbol (that
is, one named with EXTERNAL, EXTERN or EXT) is given a
definition within its module.

K - INT NOT DEFINED. An internal global symbol (one named
with INTERNAL, INTERN, INT or PUBLIC) is not defined
within its module.

L - LABEL. An invalid character exists in a label or sym¬
bol. This error can also occur for expressions when the
assembler scans for a symbol.

M - MULTIPLE DEF. A symbol was defined in the label field
of the source program more than once.

N - LABEL REQUIRED. An EQU or DEFL pseudo-op is used
without a label in the statement.

0 - OPCODE. An invalid op code exists in the op code
field of the source statement.

P - MULTIPLE PSECTS. The
once in the same progra
is not allowed in the
must be either relocatabl

PSECT pseudo-op exists more t
m. More than one PSECT pseudo
same program or module. A mod
e or absolute, never both.

han
-op
ule

Q - BAD QUOTE. ' A string expression has unbalanced quo

R - OUT OF RANGE. An operand exists out of the r
allowed for the given op code. This often occurs for
or DJNZ op code when the operand is too large, that
the target is too far from the JR or DJNZ instruc
(>127 or <-128). It also occurs when "-$" is omitted
the operand label.

S - EXPR SYNTAX. An error in an expression exists,
error usually refers to unbalanced parentheses or e
characters in the expression.

U - UNDEF SYMBOL. A symbol used in an operand exp
sion is not defined in the program or module. This oc
when a symbol is defined by and EQU or DEFL in terms
local symbol that has not appeared in the source mod
or when the undefined symbol is referenced as an inst
tion operand.

X - PARENS TOO DEEP. Parentheses may be nested no
than fifteen deep, although error code C may come u
the ten to fifteen range (depending on how complicated
parenthesized expressions are).

tes •

ange
a JR
is ,

tion
from

This
xt ra

res-
cur s
of a
ule ,
ruc-

mcr e
p in

the

31

5.2.2.2 WARNING MESSAGES

H - TITLE TOO LONG. The TITLE pseudo-op supports a title
no longer than the line length minus 53. Thus, with the
default line length of 132, the title could not exceed 79

characters.

T - TRUNCATED LINE. The input statement exceeds the
maximum. When the input statement exceeds the maximum the
statement is truncated at the maximum permissible charac¬
ter and the rest ignored. Maximum source line length is a
function of print line length as specified in location
106H (line length minus 24; see 6.1.4).

V - OVERFLOW. There are two sources for this warning—
expression evaluation and the DEFB/DEFM/DB pseudo-ops. An
expression, when evaluated, caused an overflow error in

the Z80 CPU (that is, the value exceeded a sixteen-bit
field). This can occur for any expression involving
arithmetic operators. This can be reset with the .RES.
operation. The DEFB/DEFM/DB pseudo-ops generate an
overflow warning if an operand expression has a value
exceeding an eight-bit field size (>255 or <-127).

5.3 Example listing

In this example EXASM is customized for an eighty-column
printer. (How to do it is explained in section 6.) We have
written this program:

TITLE *** MULTIPLY.ASM ***
NAME PROG

TWO-BYTE FULL PRECISION MULTIPLY

2 BYTE BINARY MULTIPLICAND
2 BYTE BINARY MULTIPLIER

GLOBAL MULT

UPON ENTRY:
H-L CONTAINS
D-E CONTAINS

UPON EXIT:
H-L CONTAINS
D-E CONTAINS

HI ORDER 2 BYTES
LO ORDER 2 BYTES

OF 4 BYTE PRODUCT
OF 4 BYTE PRODUCT

ALL OTHER REGISTERS PRESERVED EXCEPT AF

3

MULT:

SHIFT;

AREA.

ADDHL :

PUSH IX
PUSH BC
PUSH HL
LD IX,PROD

LD HL ,0
LD (PROD),HL

LD (PROD+2),HL

POP HL
LD B, 16

XOR A
RR D

RR E

CALL ADDHL

DJNZ SHIFT-$

LD H,(IX+0)

LD L,(IX+1)

LD D,(IX+2)
LD E,(IX+3)
POP BC
POP
RET

IX

CONTENTS OF H-L TO H
► THEN SHIFT PARTIA

PUSH

•

DE
PUSH HL
JP NC,OVADD

LD D,(IX+0)

LD E,(IX+1)
ADD HL , DE

LD (IX+0),H
LD (IX+1),L

PRESERVE IX
ALSO BC
SAVE MULTIPLICAND
INDEX REGISTER POINTS

TO PROD
ZERO H-L
INITIALIZE PRODUCT

AREA TO 0
INITIALIZE LO ORDER

TOO
RESTORE MULTIPLICAND
SHIFT OUT 16 TIMES

CLEAR CARRY
ROTATE RIGHT THRU

CARRY
THRU LO ORDER BYTE

TOO
IF CARRY, ADD

MULTIPLICAND
IF MORE BITS TO

SHIFT, ITERATE

ELSE, PUT HI ORDER
IN H

NEXT HIGHEST ORDER
IN L

AND PUT LO ORDER IN D
LOWEST IN E
RESTORE STACK

RETURN TO•CALLING
PROGRAM

PRESERVE D-E
AND H-L
JUST SHIFT IF NO

CARRY OUT.
GET HI ORDER PRODUCT

IN D
GET 2ND HIGHEST IN E
ADD IN H-L TO HI

ORDER PROD
PUT SUM BACK

IN HIGH ORDER OF
PRODUCT

33

OVADD:
LD HL,PROD
RR (HL)
INC HL

RR (HL)

INC HL

RR (HL)

INC HL

RR (HL)
POP HL
POP
RET

DE

PROD DEFS 4
DEFB 0

POINT H-L TO PRODUCT
ROTATE RIGHT 1ST BYTE
POINT TO 2ND BYTE OF

PROD
ROTATE 2ND BYTE THRU

CARRY
POINT TO 3RD BYTE OF

PROD
ROTATE 3RD BYTE THRU

CARRY
POINT TO 4TH BYTE OF

PROD
ROTATE 4TH BYTE
RESTORE H-L
RESTORE D-E
RETURN

We wish to assemble MULTIPLY.ASM, put the object file on disk,
print the print file on our printer, list the cross-references,
and not waste paper.

A>EXASM MULTIPLY/LEC

After assembly, this object file is produced:

$NAME 050111
$MULT 02000012
:20000000DDE5C5E5DD215000210000225000225200El 061OAFCB1ACB1BCD2E
00 10F6DD66 6A
:2000200000DD6E01DD5602DD5E03C1DDE1C9D5E5D24000DD5600DD5E0119DD

7400DD7501C1
: 10004000215000CB1E23CB1E23CB1ECB1 EE 1D1C9DA
: 0100540000AB
$0C0000040006000C000F001A0031004143

: 0000000 IFF

The listing produced by the assembly is:

34

PROG
ADDR <

*** MULTIPLY.ASM ***
[•EJECT ST # SOURCE STATEMENT

EXIDY 2SO ASSEMBLER V 2.1 PACE

'>0000

'0002
'0003
'0004

'0008
' 000B

' 000E

/

/

/

DDES
C5
E3
DD215100' 0028

0029

0002
0003 ;
0004 ;
0005 ;
0006 ;
0007 ;
0008 ;
0009 ;
0010 ;
0011
0012 ;
0013 ;
0014 ;
0015 ;
0016 ;
0017 ;
0018 ;
0019 ;
0020 ;
0021 ;
0022 ;
0023 ;
0024 MULT:
0025
0026
0027

NAME PROG

TWO-BYTE FULL PRECISION MULTIPLY

GLOBAL MULT

UPON ENTRY:
H-L CONTAINS 2 BYTE BINARY MULTIPLICAND
D-E CONTAINS 2 BYTE BINARY MULTIPLIER

UPON EXIT: _ , __r_ril,,.
H-L CONTAINS HI ORDER 2 BYTES OF 4 tmt HftUUUv
D-E CONTAINS LO ORDER 2 BYTES OF 4 BYTE PRQDUC

ALL OTHER REGISTERS PRESERVED EXCEPT aF

210000
225100

225300

0030
0031
0032
0033
0034

PUSH
PUSH
PUSH
LD

LD
LD

LD

IX
BC
HL
IX »PROD

HL > 0
(PROD)*HL

(PROD+2)*HL

0011 El 0035 POP HL

0012 0610 0036 LD B* 16

>0014
0014 AF

0037 SHIFT:
0 0 sw XOR A

■0015 CBl A 0039 RR D

'0017 CB1B
0040
0041 RR E

'0019 CD2E00'
0042
0043 CALL ADDHL

'001C 1 0F6
0044
0045 DJNZ SHIFT-*

'001E DD6600

0046
0047 ;
0048 LD H *(IX+0)

'0021 DD6E01
0049
0050 LD L* (IX+1)

'0024 DD5602
0051
0052 LD D*(IX+2)

'0027 DD5E03 0053 LD E>(IX+3)

;PRESERVE IX
*ALSO BC
;SAVE MULTIPLICAND
;INDEX REGISTER POINTS
; TO- PROD
;ZERO H-L
;INITIALIZE PROnUC.
; AREA TO 0
sINITIALIZE LO ORDER
; TOO
;RESTORE MULTIPLIlAN^
;SHIFT OUT 16 TIMES

CLEAR CARRY
ROTATE RIGHT THRU

CARRY-
THRU LO ORDER BYTE

TOO
IF CARRY> ADD

MULTIPLICAND
IF MORE BITS TO

SHIFT* ITERATE

ELSE* PUT HI ORDER
IN H

NEXT HIGHEST ORDER
IN L

AND PUT LO ORDER IN 0
LOWEST IN E

35

PROG *** MULTIPLY.ASM *** EXIDY Z80
ADDR OBJECT ST # SOURCE STATEMENT

' 002A Cl 0054 pop- BC
' 002B DDE1 0055 pop IX
' 002D C9 0056 RET

0057
0058 ;
0059 ;
0060 ; ADD CONTENTS OF H-L TO HI
0061 ; AREA. THEN S ;HIFT PARTIAL
0062
0063
0064

'>002E
' 002E D5

0065 ADDHL :
0066 PUSH DE

' 002F E5 0067 PUSH HL
'0030 D24000' 0068 JP NC»OVADD

'0033 DD5600
0069
0070 LD D» (IX+0)

'0036 DD5E01
0071
0072 LD E»(IX + 1)

' 0039 19 0073 ADD HL»DE

' 003A DD7400
0074
0075 LD (IX+0)»H

' 003D DD7501 0076 LD (IX+1)»L

'>0040
'0040 215100'

0077
0078 OVADD:
0079 LD HL > PROD

'0043 CB1E 0080 RR (HL)
'0045 0081 INC HL

'0046 CB1E
0082
0083 RR (HL)

'0048 23
0084
0085 INC HL

'0049 CB1E
0086
0087 RR (HL)

' 004B 23
0088
0089 INC HL

' 004C CB1E
0090
0091 RR (HL)

' 004E El 0092 POP HL
' 004F D1 0093 POP DE
'0050 C9 0094 RET

'0051
0095 ;
0096 PROD DEFS 4

'0055 00 0097 DEFB 0
SYMBOL VALUE TYPE STMT STATEMENT REFS

ADDHL ' 002E 0065 0043
MULT '0000 INT 0024 0011
OVADD '0040 0078 0068
PROD '0051 0096 0079 0033 0031 002:
SHIFT '0014 0037 0045

ASSEMBLER V 2.1 PAGE

RESTORE STACK-

RETURN TO CALLING
PROGRAM

ORDER OF 4 BYTE PRODUCT
PRODUCT RIGHT.

PRESERVE D-E
AND H-L
JUST SHIFT IF NO

CARRY OUT.
GET HI ORDER PRODUCT-

IN D
GET 2ND HIGHEST IN E
ADD IN H-L TO HI

ORDER PROD
PUT SUM BACK

IN HIGH ORDER OF
PRODUCT

POINT H-L TO PRODUCT
ROTATE RIGHT 1ST BYTE
POINT TO 2ND BYTE OF

PROD
ROTATE 2ND BYTE THRU

CARRY
POINT TO 3RD BYTE OF

PROD
ROTATE 3RD BYTE THRU

CARRY
POINT TO 4TH BYTE OF

PROD
ROTATE 4TH BYTE
RESTORE H-L
RESTORE D-E
RETURN

36

PROG *** MULTIPLY.ASM ***
ADDR OBJECT ST # SOURCE STATEMENT

EXIDY Z80 ASSEMBLER V 2.1

ERRORS=0000

WARN1NGS=000 0

6 Customizing EXASM

EXASM has certain default values. ’ These are found in locations
103, 104, 105 and 106 (hexadecimal) of the EXASM program. They
contain the code for, respectively, default control options,
default list options, page length and line length. As supplied
to you on disk by Exidy, these locations contain, respectively.
the bytes 05H, 08H, 34H and 7B hex • These values co rres pond
to :

list on (byte 0)
cross refer ence off (byte 0)
ob jec t out on (byte 0)
form feed on (byte 1)
page length 52 (34H)
line width 123 bytes (7BH)

If you wan t your EXASM program to have difere nt defaul t values
you may custom ize the program by using the S command (Set) of
the DDT program that is supplied on your
Let's say you wished to change the values
tions to these values: 07H, 09H, 37H and
do it (your input is underlined):

CP/M system disk,
in these four loca-
80H. Here's how you

A>DDT EXASM.COM

DDT VERS 1.x
NEXT PC
3000 0100
-S103

0103 05
0104 08
0104 34
0105 7B
0107 31

Now you have a new, slightly different EXASM program. But it
exists only in memory. If you save this version on disk, use
the CP/M SAVE command this way:

£7
£9
£7
50

PAGE

A>SAVE 47 EXASM.COM

37

Why 47? Each 100 bytes represents one page ♦ When DDT signed
on, it told you that EXASM exists in memory from address loca¬
tion 0100 to 3000. (DDT deals exclusively in hexadecimal num¬
bers.) 30 hex is 48 decimal. The SAVE command saves from
location 0100. Since that first 100 bytes represents one page,
we subtract 1 from 48 to get 47. With the same file name, the
SAVE command overwrites (and replaces) the old file. If you
want two versions of EXASM, one the original and one with your
modifications, use a different name in the SAVE command.

A>SAVE 47 EXASM1.COM

As with other CP/M commands, you can specify the drive as part
of the file name, with the default to the currently logged
drive.

A>SAVE 47 B:EXASM.COM

After execution of the previous command, you have a new file on
drive B called EXASM.COM that contains your modifications,
while the original remains unchanged on drive A.

6.1 Default options.

To see why you might want to change contents of memory loca¬
tions 103, 104, 105 and 106, let's see what they do. Locations
103 and 104 each consist of a two-digit hexadecimal number (so
do 105 and 106, but they're handled differently, as we'll see
in a moment). This hexadecimal number may be represented by an
eight-digit binary number, each digit of which is called a bit.
Each bit may be on (1) or off (0). The number five is repre¬
sented this way:

bit 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 1

The binary number 00000101 (or just 101) is the same as the
hexadecimal number 05H. In this example, bits 2 and 0 are
turned on and the rest are off. Now, the default control
options for EXASM are these:

6.1.1 Default control options (location 103)

Bit 0 * list output
Bit 1 - cross-reference output
Bit 2 * object output

For these first three bits, 1=0N, O^OFF. The unused bits, bit
3 to bit 7, are always 0. With 05H in location 103, the con¬
trol options default to list and object output. If you wished
the default condition to be no output of print file, you would
turn off bit 0 by changing it from 1 to 0. (Here is a possible

38

reason for doing this. You might have no printer and not wish
to fill your disk with print files and thus you don’t normally
wish listings.) This changes the binary number 00000101 into
00000100, or 05H into 04H. Now, to get a disk file listing
(.PRN file), you must use the D option. Without the D option,
no print files generate to disk. Turn on any of the bits to
change the default to that listed; do so by placing a 1 in the
appropriate postion, and placing the equivalent hex number into
location 103, as described in the previous section.

Similarly, the default list options are these:

6.1.2 Default list control options (location 104)

Bit 0 = suppress generated text printing
Bit 1 = suppress warning messages
Bit 2 * "ecology option" (compressed listing)
Bit 3 * form feed option

Here is the number 08H in binary representation:

bit 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0

This is the normal default setup for list control options. The
normal default situation for list control options, then, is bit
3 only turned on, that is, implementing only the form feed
option. If your printer does not have form feed capability,
you can turn this bit off.

No generated text refers to DEFM, DEFB, DEFW and DB statements.
If you wish text in such statements to truncate after the

fourth byte, then turn this bit on. (Change the byte in loca¬
tion 104 from 08H to 09H.) With the bit off (the normal de¬
fault option), this statement

DEFM ’HI, I’’M YOUR FRIEND.’

produces, on assembly, the following print file:

EXIDY Z80 ASSEMBLER V x.x PAGE 1
ADDR OBJECT ST #

’0000 48493C20 0001 DEFM ’HI, I”M YOUR FRIEND.’
49274D20
594F5552
20465249
454E442E

ERRORS=0000

WARNING S = 0000

Notice that the object code contains the complete text.

39

With the bit turned off, however, on assembly, the following
print file is produced:

EXIDY Z80 ASSEMBLER version 2.1 PAGE 1
ADDR OBJECT ST if

'0000 48493C20 0001 DEFM 'HI, I"M YOUR FRIEND.'

ERRORS-OOOO

WARNINGS*0000

Notice that in the object code text in the listing beyond the
fourth byte has been truncated.

Similarly, if you wish to default to "ecology option” (paper
saving—suppresses form feeds in text), rather than having to
always type in /E as an option, turn on bit 2.

6.1.3 Page length (location 105)

The default page length (lines per page) is 52 (34H). You can
change this to any value up to 255 (FF) by the method described
earlier.

6.1.4 Line length (location 106)

The current default value for column width is 132 (84H). If you
have an 80-column printer, you'll want to change this byte to
50H (or any other value). Note that printer line length minus
24 (decimal) is the maximum source line length.

Z
8

0
 M

IC
R

O
P

R
O

C
E

S
S

O
R

 I
N

S
T

R
U

C
T

IO
N

 S
E

T

7 Z80 MACHINE INSTRUCTIONS

i2asaSSiSSSSsisiisIsSSsSSSaSss

If -0;l! ooi 0s| IfoSli . ,i !s Mf sn?

isiss§9sfiiiSzg!i§iiiiSs568i!g8ii6iii§ii§i;»aii8isse8i§9isiSs8i8iiisssi3liiiiiisiiiitilO:iisiil

illlllllljllllllllllllllllllllllllllllllll^J^Ll^JJllllllSlllIllljgljlllllllllllljjljlllllSjl

sssJJiliiJillllflllllllllll

assssssaasa»5s(55«5555SSSS5S5555555S55555S555555S5S5S5S555a55555a55555S55S55ss§sil Sldllii

liiiilliisassiiislsssiiilill

5sisssss£l5sss5sssssssaasRBsssssss5ssssssss«BKBs£ii§iiSiSssi£is£isssiIisiis:sisssIsssiss$sss:s::

IlsiSliillllliliiililliiiiglglllllllllisIslllliSiisiilllialilllsIllillisisSlIllllllllIlslIlllIli

.-g-*S*i*Sil2~_5-SSSS5Ss2SSSSSdSs-»o-x J..uo.* J«;22ris?;:s2:;:!:*“?r*-*<'SSS5;:i2:ue‘I-5-*- = -1

ssssssasaGslissoss ISiis*=s-ssss-

tZ 3 3 33 j^jbuo. UI-. I«55?<ii < «<<<« <<<<«OQ»,i J.J JSli »< J«uo»i -,*««uo. i - ? < . j
222S2SSSS2222222S222322i§§2323J3233e9e2siiilll!l^§^§S§3323223laa8^^siiii!l!lillllliiIi3lllil

aa5sass»ss33iss3sssssjSs$s:scifisssaisassss;sssasssssssSssssas***sa*S8ii8asi«;53SSS;s;53S'3<sssiJ5iSs

00

Z>
P 2 CD UJ

2|§i SgOCQ.
NS°o

J a2 Ji-cD„uf<5*Soo02 </> x 9 Q VJ* °*§J **. 5:!: ,Z Sfi&xii 5i?5;tf4z « u o * x 5 < a u a M : - ? < * «-• => - : - - <

\ IssllssssIsSsSsSlsssUSsSalsSSiSsialsHSilaSsSiSsSlsillSSsSSIsSSSSsSsasssssssssssss222222I22

5§5SSssicg§§s^§ss2?222-:2^2T52ie“^s“SssiCs^s2HsysSs;sIssssSs;ssisysS S8SasftS;S53SSS5

Z80 MACHINE INSTRUCTIONS

-•! -?5 -5? zti

siSilsisIsIssssiSilSISISSSillilliilil aasasaasaxsssasssasaasarfSSSSS
*

5888815 llasisiaisStaSiiiSSsISsSSgSSIgliggSiSgg.iis.^^^Saiisassti^s

-?? m~> .?? _ 5 5 _Sf _«5 _?? - f T *?^
I x x I I I J::<nigQ»il jZjjjj 5;t<BuQ»: j?::<ouOu,i j?:r<«uOy-x

Q w I J < 0 2 2 8 S S S » < < < < < < < < < < < X X X X 0 0*0000 0000-

8iiSS!Ssgs5i5sS885t88a88aSS8a855S5555555S55555555555555S55S55555555a»»»aaaaaa»a»»»»»»»»*«»aaa*»-»

till.! D55S;££!iB*§2**8$**8S llliyliiliiiil5§5s

*§

- ?? -?? -?? 2?? -- -?? 55 -??
w _ y» x w 5 s s < • u o »« x j 5 5 s < • o o ui i j 5 s r <. • o. p w x j 5 r = < • u. o «• x w u5^$a.-o^ »i*> r 2 £ « - u - x 5 = = “ * ^

iSSssssSsiissiiiiSSssiiiSiSSssssisisssssssssssssssssssssssissssiissssfsssiisssssSSSHSSSSSSS.c...

mill lls|II|||||ll||||5sllilil§III§!!llillilss=33£=2sjlll!lllliII=lllli§gll?sli!llllj!sl^gSll!l

*§

Ififixi I x x i § 2** GGGGGGG5 - u - - x > < « S x 2 £ 5 ? = < a u o - x - ? = = * * « e - x - l ? = < « u o* x- ? = = < *
IIIlllIlIilillllllllilslsslllisssissIilHiiiiillliliiisillllllllsliis .

?? -*? -??
?? O O

sisSSSSSSS5S5SSS5SSSSSSSS5SS5SSSS5S

3§SS8S22iii3£ lIsIIlIilllisiiassasaallllllllllillioSiilssssllilisiSlIlllilliillHlilsiSlIIslliss

!ii!iiiiii.izz2?zz?44<<<<<<<<<4<(<<itj)iii#iii(i)#ai(iisiii®#uuuuuuuuuuuflQQQOOO00fl20Q..«»l-,.**-..::i.itiii*iii-
OOOOOOOOOO000aCGCOOOXOOaOOCCaaOCXCaOOO

iiiliiiiiiiiilliSll,g.iii..««i.sJL..,.8li«ii..« .dh

. ilL.SooSwxiii^ I lllH - |i5.3ls-i§isL.8uos..i5sJ» . .istHlsIfflESsIlIiiitiiiii?????
SS8lfihl8a8888gaSll888SSS8lass255s3ni««iiilS*HIH{ll8iinii!!SHili*ii5iS5««««««22233S3S8S222s

.8lili,.JI.........a«.5»x=ii««..8g!ai!!!il»81»«»»=«=ii«»illg=i»iS!H!SHHHs.».=»«ilSlI

= ; 55 5 5 .ii >5? _f? -?? 2|i zzizz
<80ouiJ??<«oo«iJ? = <.UQ»iJ?:<««o-i-??:<«uo«:J??<*oo*i-5::<«j0.i-£?:<»to;:i.ulzfz^?N j H
o “ o o o o ----_
5S3B5B55555a5SSsa55SB5aS5aaB*SSa5SaBsISsSBaSaBSBB5-isS5ii55i53555Saa55a555 5a*«3252o2yuu:S2i&ttfc£:-£it

lllllllllllllllsllllsilllliliiloiii^IgsilsgSlIlllllgeBlBlgllssSBssssssSSIslIgggaaig mmm

00

2 > CJ
?2q0z
ohQo

oo oc cc ^
N K O ? goo5

9x> * o x 5> i * > xci££5:3;a5i3i - ■y zH
;i<<2<2:<<<xx?i<<<<<<4:<<<x^xxi5 = ii:>2i???<«uo.x:;e| = =

silsss2ssssl5llsiis2ssss«lsiss!!ili!!lsls3s:s;;jl!s5

42

PART II: EXLINK

8. INTRODUCTION

When creating a large program, it is convenient to break it up
into smaller modules for several reasons. For one, bugs may be
detected with greater ease by analyzing one small module than
by confronting the entire program. Also, reassembly of
individual modules is quicker than reassembling the entire
program. Finally, this breaking of programs into modules
permits storing a large source program exceeding the capacity

of a single disk drive.

When creating individual modules, however, program references
between two modules must somehow be linked together for the
program to work as a whole. This linkage is performed by

EXLINK.

To understand EXLINK we need to review the two types of modules
we defined earlier in section 2. An absolute module is one the
user puts purposely at a specific location. This location is
called an absolute address and the program must execute at that
location only. Absolute addresses are rarely used because of
the inflexibility they create in programming.

More commonly used is a relocatable module. The starting
address of a relocatable module (an offset or relative address)
depends on the address of the preceding module and may at any
time change if, say, the previous module changes size.
Relocation is the process and ability of a module to be moved
in RAM and still maintain a network of communication between
modules of various, sometimes changing, addresses. For
instance, if Tom told us he lived three houses from Harold, we
wouldn't know Tom's absolute address until we knew Harold's.
That is, Tom's address is relative to, or an offset from,
Harold's. Knowing Harold's address, we add three and come up
with Tom's actual or absolute address.

This same principle applies to relocation, using EXLINK. We
would not want to assign an absolute address to each

instruction in a module, for if we did and needed to add or
delete an instruction, all else would be thrown off. With
relocatable addresses, the location of each instruction is
relative to the beginning address of its module. Because
modules are stacked directly on top of each other in RAM, the
beginning address of each module is dependent upon the end
address of the module before it.

EXLINK is an Exidy program that runs under CP/M. EXLINK is a
relocating linking loader which builds machine executable Z80
code in its memory. This code is obtained from both
relocatable and non-relocatable (absolute) object output
modules of the EXASM assembler. As each module is loaded,

43

Three user-input parameters provide instructions to EXLINK,
indicating how relative address relocation is to be done. They

are :

A=XXXX (starting offset number), given on the EXLINK
command line

ORG YYYY, given within the assembly source module before
assembly

filename ZZZZ (offset number) given optionally with each
.OBJ file EXLINK load command.

The default value of each parameter, if not otherwise
specified, is 0. All three values are summed by EXLINK, and
this sum becomes the starting address of the module being
loaded•

Generally speaking, in the case of loading the first module
only, the programmer uses either an ORG statement or an A=XXXX
(starting offset) statement. Because CP/M uses RAM from 0000H
to 00FFH, the programmer generally starts loading programs at
100H to create CP/M command programs.

One way to establish a starting address for a file is to
specify A^lOO in the command line. The ORG statement (ORG 100)
also accomplishes this. However, this is placed in the actual
source of the module to be loaded. If a programmer wishes to
move this module at a later time, the ORG 100H places the
module 100H past the last module loaded, leaving a 100H ’’hole"
in RAM. Thus changing the ORG address requires reassembly,
making it a more "permanent" command. The A=100 option is
changeable at each link time and is only used when loading the
first module.

In this case, using the offset address is convenient. Because
EXLINK supports negative offsets, you can specify -100 in the
load command statement. This compensates for the ORG 100H
statement and places the module one byte after the previous
module•

Thus, the first module’s starting address is determined by the
sum of the ORG address given in the source file before assembly
(if any), plus the address given on the EXLINK command line by
the A=*XXXX option, plus the offset included immediately after
the filename first given to EXLINK. Only the ORG address
applies if the module is absolute.

Each subsequent module is stacked on top of the previous
module 9 automatically. That is, if the user makes no
specifications, EXLINK automatically determines the next
starting address by adding the end address of the previous
module plus one, the ORG address, and the optional offset given
after the filename (notice, again, A=XXXX deals only with the
first module being loaded). EXLINK loads the next module at
that location.

44

EXLINK is itself relocatable since it finds the user's BDOS and
overlays the Command Console Processor (CCP) at the high end of
CP/M's memory. That is, while EXLINK is loading, it locates
itself in that area in RAM. This feature provides the maximum
amount of RAM available for user modules. The diagrams to
follow graphically represent these locations. In this respect,
EXLINK could be called the Relocating, Relocating Linking
Loader!

9 OPERATION

EXLINK is called from CP/M by typing EXLINK on the command
line. To use batch mode, type EXLINK followed by a list of
file names and a list of up to three options. The two lists
are separated by a slash (/). If you specify no file names on
the CP/M command line, the program signs on, enters the
interactive mode, gives an asterisk (*) as a prompt, and waits
for a valid EXLINK command. All lower case input is converted
to upper case automatically. All filenames must be
alphanumeric.

When EXLINK is called, it immediately fills all the memory into
which the user could load his programs, with zeros (from 100
hex to the start of the EXLINK program). This sets all DEFS
areas to zero.

9.1 EXLINK interactive mode commands

In these examples, information in square brackets [] is
optional user input, and angle brackets <> refer to input as
described in the text.

9.1.1 *L [d:]filename[.OBJ] [ZZZZ]

This command finds the .OBJ file with the given file name on
the logged in drive (or, if the option d:—for any valid CP/M
drive —is specified then on drive d:). The filetype .OBJ may
be specified but is the default and only valid filetype. It
creates a memory image of the file, and relocates it for the
optional starting offset ZZZZ. This is done by one or more of
the statements ORG YYYY, or ZZZZ (offset number), as shown
here :

*L FILE 1

*L FILE 1 100

*L B:FILE1

*L B:FILE 1.OBJ .

*L FILE 1.OBJ 200

45

9.1.2 * T

This command prints the current global symbol table.

9.1.3 * E [d:] [<filename>] [.COM]

This command exits the loader by writing the newly-linked

program in memory to a disk COM file (on optional drive d:)

starting at memory address 100 hex up to the highest address

loaded. The file name is that of the first object module

loaded or the user may optionally specify a different name for

the COM file to be written by including the <filenarae> option

in the command.

*E

*E B:

*E FILE2

*E FILE2.COM

*E B : FILE2.COM

After the E command has written a .COM file, the message

FILENAME.COM SAVED, RECS WRITTEN=XX" appears. XX is a

hexideciraal number referring to how many 128-byte CP/M records

comprise the .COM file.

9.1.4 *Q

Both this command and Control C quit EXLINK and return to CP/M

without writing a COM file. This is useful to abort an EXLINK

operation.

The command line may include up to three options, listed in any

order, separated by commas (see 9.2 for details). The options

E and T may be entered in interactive mode as commands.

Interactive mode is indicated by the EXLINK prompt * when

either all the command line has been exhausted successfully

(and no E option was found), or a non-fatal error has occurred.

Unrecognized options are ignored.

If a list of batch files is given on the command line and the E

option is not specified in the options list, EXLINK returns to

the interactive mode with the asterisk (*) prompt after all the
batch files are loaded. Then, additional OBJ files may be

loaded interactively before exiting. This also occurs if any

non-fatal errors occur during batch mode operations.

46

9.2 Batch mode options

The general form of the CP/M command line when using EXLINK in
batch mode is:

a>EXLINK [<filename1>] [>filename2>][,<filename3>]...[/options]

<filenamel> (the first module's name) is the file name the E
command uses when it creates the COM file, provided no other
file name is specified either on the CP/M command line (with
the E option) or interactively (with the E command). File
names on the CP/M command line are delimited by commas. Your
command line may contain as many characters as will fit in two
lines (up to a total of 128 characters). The OBJ files in the
list are ordinarily accessed on the drive currently logged on,
unless you specify a drive using the CP/M convention
d:<filename> for file <filename>.OBJ on drive d:. The filetype
•OBJ may be specified, but is assumed if it is omitted. Only
.OBJ files are accepted. The options list follows the file
name list and is sepa.rated from the list of files by a slash
(/). It may include up to three options, listed in any order,
separated by commas.

The command line options are:

9.2.1 A=XXXX [SSSS]

XXXX represents the starting offset to be added to the ORG
address (if any) of the first OBJ module, and SSSS represents
the optional starting address of the global symbol table. As
the symbols are added to the table at the given address, the
table expands to a lower location or "grows down". As the
symbol table expands, then, the RAM available for programs
shrinks in size.

The starting address default is 0 if this option is not used.-
If SSSS is not specified, the symbol table starts at the
highest RAM address available just below EXLINK's code area.
The symbol table option should not ordinarily be used since the
symbol table is automatically positioned in the best possible
place for most applications. If the option is used however,
care must be taken to prevent the table from "walking" on the
EXLINK program, BOOS, page 0 of memory or the users program
which is being linked.

9.2.2 E[d:][<filename>][.COM]

This automatically exits EXLINK by writing a COM file using the
optional file name <filename>.COM on the optional drive d:.
The file name of the first module loaded is used if the
optional file name is not included. The drive always defaults
to the currently logged-on disk for execution unless the drive
name d: is included. The file type .COM may be specified but
is the default (and only valid) file type.

47

9.2.3 T

This prints the global symbol table after all modules on the
command line list have been loaded, as seen here.

*T

SYMBOL TABLE (UNDE F = * ***)

ATTN 01E3 DRQ 0215 HOMEDK 0103 KKPLC 02A0
MINUS 0276 PLUS 0204 STQY 01EA SUBQ 013B
TTYTRU 02 BB ZZZZ 0118

If the E command is used on the options list, and one or more
global symbols are unresolved after linking and loading all the
modules in the file name list, then EXLINK will display An
error message and return to interactive mode. However, if the
E command is input interactively, and one or more global
symbols are unresolved, then EXLINK displays the same error
message as a warning, and writes the COM file anyway with the
unresolved symbols.

9 • 3 Other features of EXLINK

9.3.1 Working memory or the "loading zone" is filled with
zeros before loading begins. Hence, a COM file written from
modules starting at an address greater than 100 hex, while not
recommended, will execute properly after being called from
CP/M. Execution starts at the module with the lowest starting
address. The preceding zeros are decoded as NOP (no op)
instructions by the CPU, and cause the system to "fall through"
to the first module.

9.3.2 EXLINK does not permit modules to be loaded in RAM
between 0 and 100 hex (this would wipe out the CP/M work area)
nor in RAM occupied by EXLINK itself. A warning is issued if
an attempt is made to load modules at addresses above EXLINK’s
highest address. The user may override this warning. However
please note that by using this override, it is possible to
overwrite the CP/M BDOS and destroy EXLINK’s disk access
capability. So, extreme care should be taken when loading
modules in RAM above EXLINK.

9.3.3 In the running of EXLINK, certain messages are dis¬
played. BEG ADDR and END ADDR specify the absolute location or
boundary limits of a module in RAM. UNDEF. SYM refers to the
number of symbols not yet resolved.

48

10 SAMPLE RUNS

10.1 Batch mode linking example

Suppose the EXASM assembler had assembled four modules of
source code with global references between them. The four
object modules are accessible as CP/M .OBJ files on disk and
are ready for linking. All are ORGed at 0 but the starting
address is 100. These modules are named MAIN.OBJ, SUB1.0BJ,
SUB2.0BJ, SUB3.0BJ and all are on drive A except SUB2.0BJ which
is on drive B. (Refer to the Memory Map diagrams). Call up
EXLINK this way (user input is underlined, and carriage returns
are understood at the end of each line):

A>EXLINK MAIN,SUB 1,B:SUB2,SUB3/A»100,E»NEWNAME,T

Exidy Relocating Linking Loader.
Copyright (c) 1980 Exidy Inc. ver 2.1

Starting offset is 100

*L MAIN

BEG ADDR 0100
END ADDR 012D
UNDEF SYM 04

*L SUB1

BEG ADDR 012E
END ADDR 023A
UNDEF SYM 03

*L B:SUB2

BEG ADDR 023B
END ADDR 02A9
UNDEF SYM 06

*L SUB3

BEG ADDR 02AA
END ADDR 02F7
UNDEF SYM 00

*T

SYMBOL TABLE (UNDEF= ****)

ATTN 01E3 DRQ 0215 HOMEDK 0103 KKPLC 0 2 A0
MINUS 0276 PLUS 024 STQY 01E A SUBQ 013B
TTYTRU 02 BB ZZZZ 0118

*E NEWNAME
NEWNAME.COM SAVED, RECS WRITTEN-04
A>

MEMORY MAP
43K SORCERER

BEFORE MODULES ARE LOADED

4 S

FFFF

VIDEO RAM
MONITOR ROM

ROM PAC

LOADING
ZONE
36K*

BYTES

Note: All addresses are in hexidecimal and refer to a
48K CP/M. This illustration is not to scale.
♦-Approximate value

MEMORY MAP
48K SORCERER

AFTER MODULES ARE LOADED

48K*
USER

RAM

FFFF

,B£FF

A6FF*

92FF*

VIDEO RAM
MONITOR ROM

ROM PAC
DISK BOOT ROM

EXIDY CP/M
CBIOS and BDOS

EXLINK
(overlaying CP/M CCP)

BF00

A70fl*

9 300*

LOADING A
ZONE ^
36K*

BYTES

0000

Note: All addresses are in hexidecimal and refer to a
48K CP/M. This illustration is not to scale.

♦-Approximate value

51

The console I/O shown above is produced automatically after the
CP/M command line is typed in by the user. This is an example
of batch mode linking. Because all modules are ORGed at 0, the
only offset involved is the starting one (100 Hex), specified
with the A= option. The symbol table is placed in the default
RAM area. MAIN is loaded from 100H (ORG 0+100H) to 12D. It
has four unresolved external references. SUB1 is loaded
immediately after MAIN, at 12E (the sum of ORG 0 + the last
byte 12D+1 + the offset 0, not specified). This process
continues for each module loaded. The T option displays the
global symbols and each of their addresses. The E option
writes to disk all RAM from 100H to the highest address, unless
prevented by undefined symbols.

Since the E command is included with the name NEWNAME in the
options list, EXLINK writes a .COM file named NEWNAME.COM.
This file is the memory image formed from loading the modules
MAIN.OBJ, SUB1.0BJ, SUB2.0BJ, and SUB3.0BJ. In other words,
the output of EXLINK is a CP/M file (in this case named
NEWNAME.COM) corresponding to the memory image from 100H to the
highest address loaded (2F7) after EXLINK converts the four
object modules into absolute machine executable code with
global references resolved.

10.2 Interactive mode linking example

The following sample run
interactively but this time it

creates the same .COM
is called MAIN.COM.:

file

A>EXLINK j'

Exlink Relocating Linking
Copyright (c) 1980 Exidy

Loader.
Inc. ver 2.1

Starting offset is 0 (default offset is 0).

*L MAIN 100 (the user’s response loads
MAIN.OBJ with starting

off set of 100.)
BEG ADDR 0100
END ADDR 012D
UNDEF SYM 04

*L SUB 1

BEG ADDR 012E
..

- . • J

END ADDR 023A ■ ---
UNDEF SYM 03

*L B:SUB2

BEG ADDR 023B
END ADDR 02A9
UNDEF SYM 06

52

*L SUB3

BEG ADDR 02AA
END ADDR 02F7
UNDEF SYM 00

*T

SYMBOL TABLE (UNDEF- ****)

ATTN 01E3 DRQ 0215 HOMEDK 0103 KKPLC 0 2A0
MINUS 0276 PLUS 0204 STQY 01EA SUBQ 013B

TTYTRU 02BB ZZZZ 0118

*E

MAIN.COM SAVED, RECS WRITTEN-04

(Now a file is written named MAIN.COM since
the optional file name isn't included.)

The above console 1/0 is much like the first example. The
difference is that after each * prompt, the user enters each
command interactively.

11 ERROR MESSAGES

Thirteen error conditions cause
displayed. Some errors are fatal.
Others are non-fatal and return to
the * prompt).

an error
and control
interactive

message to be
returns to CP/M.
mode input (with

**** CHKSUM ERROR ****

Checksum error. The Checksum computed from an input
record doesn't agree with the one originally recorded,
error is rare since errors of this type are usually caught

file
This

by

CP/M's disk I/O first.

**** DBL DEF ERROR ****
SYM: symbolname

Double definition of a global symbol. This error occurs when a
symbol declared global and defined in one module is declared
and defined in another. The particular symbol is shown
following "SYM:". Of the two definitions, the first one is
used as the symbol's value.

53

**** SYM TAB OVERWRITE ERROR ****

Attempt to overwrite the loader symbol table. A module
attempts to load over the global symbol table and is prevented
by this fatal error. CP/M warm boots at this point.

**** PROTECT RAM LOAD ERROR ****

Attempt to load outside "safe" RAM area. Protected RAM is page
0 (0000-00FF hex), and the RAM occupied by EXLINK. This error
is also fatal and warm-boots CP/M.

**** SYM TAB OVFLO ERROR ****

Symbol table overflow. Table reaches 100H. This is a fatal
error causing CP/M to warm-boot.

**** SYNTAX ERROR ****

This message is displayed if a command other than L, T, Q, or E
is entered in interactive mode or if non-hex ideeimal digits are
used when hex is expected. It is also displayed if EXLINK
cannot make sense of the CP/M command line in batch mode. : .

**** DISK WRITE ERROR ****

i: 0
This error occurs when writing the .COM file if either 3the
diskette directory or file space is full, or any other write
fault occurs. This error is fatal, causing CP/M to warm start.

• T r ' ' - r ■ ■ - .

**** BAD FILE TYPE ERROR *** .j * ?

If the user requests EXLINK to load a file with a filetype
other than .OBJ, this error occurs. This error also occurs
when output files (associated with the E command) are not of
type .COM. The error is non-fatal. -**> . . /;- - * • / *

**** UNDEF SYM ERROR ****
**** UNDEF SYM WARNING ****.t! - 0 u V £

If the E command (exit with .COM file wirite) is used when

undefined symbols are still outstanding, this message appears .

In batch mode, this error causes a changeover to interactive

mode in which case the prompt (*) is displayed and further user

input is expected. In interactive mode, the message is

displayed as a warning but the .COM file is written anyway.

54

**** BEG ADDR NOT

**** BEG ADDR NOT
100H ERROR ****
100H WARNING ****

This message is displayed when the E command is used and the
'modules loaded don't start at 100 hex (the start of CP/M's
transient program area, TPA)• In batch mode it is a non-fatal
error causing it to change to interactive mode. In interactive
mode it is merely a warning and allows the .COM file to be
written anyway for starting addresses greater than 100H.

**** LOAD ABOVE EXLINK ERROR ****
ADDR: xxxx DO IT ANYWAY (Y/N)?

This message expects user input to enable
loading above EXLINK program. If N is enter
aborted. If Y is entered, EXLINK proceeds to 1
and doesn't check again for modules loaded abo
address indicated is the first memory loca
above EXLINK.

/disable module
ed, the link is
oad the module
ve EXLINK. The
tion encountered

**** .OBJ FILE NOT FOUND ERROR ****
FILE : filename

If an input file name is given to EXLINK and cannot be found on
the drive indicated, this message appears. The file name in
question is displayed on the following line.

**** NOTHING TO SAVE ERROR ****

If the E command is given before any modules have been loaded,
this message appears.

12 EXAMPLE OF THE COMPLETE EXASM AND EXLINK

Here is the assembly by EXASM of two program segments, MODULI
and MODUL2* Note the unresolved external global references in
the object code of MODULI (indicated by asterisks). Notice the
trailing apostrophes in the object code of M0DUL2, referring to
relocatable addresses.

Next, with EXLINK we link the two modules and load them under
the name TEST.COM. After the linking of MODULI, EXLINK tells
us there is one undefined symbol (the external global XXX).
After the linking of M0DUL2, we see that the reference has been
resolved (because EXLINK reports no undefined symbols). Notice
that M0DUL2 is assembled with starting address of 0000.

55

r, g *
To compare code, we use the ,CP/M DUMP program. Notice *the
unresolved CALLs from MODULI are now calls to address 010CH.
(CD0C01). CD is the hex code for the CALL instruction.. ^The
CPU knows that the next two -bytes will be an address , ywith .the
low-order or least significant byte first. That is", CD#C01
means CALL 010CH. (At location 010CH is the routine thatft we

named XXX.) t us

Notice that EXLINK starts M0DUL2 at 0I0CH, directly after the
last address of the object code of MODULI. (The instruction C3
is at address 0109H, while the jump address 0000 is at OlOA.and

010BH.) >■ CA'

After the command file TEST.COM has been saved on disk, il;rcan
be executed merely by typing its name on the command line.
What the program does is use CP/Mfs BD0S to print the message
three times to the console . . c }

O Pz

* y if v • *■ ?
% , ■■ r s'

:i rj - .• . : ■ q r .1 r .0 : r
' i, c i a 0 •> 1 i 11 s j ~

q c D c I no I IfcS 1/p

- art: :l
c

56
” i i :’3T 2 , -

A>EXASM MODULI/LE
Oi'41

EXIDV Z80 Assembler - version 2.1,3- . v r

Copyright (C) 1980 by EXIDY INC
PASS 2
MODULI EXIDY Z80 ASSEMBLER V 2.1 PAGE

ADDR OBJECT ST # SOURCE STATEMENT

0001 NAME MODULI
0002 GLOBAL XXX {EXTERNAL
0003 ORG 100H {ORG AT CPM TPA

0100 CDFFFF* 0004 CALL XXX {PRINT MESSAGE
0103 CD0101* 0005 CALL XXX {PRINT MESSAGE
0106 CD0401* 0006 CALL XXX {PRINT MESSAGE
0109 C30000 0007 JP 0 {WARM-START CPM

ERRORS=0000

WARNINGS=0 000

A >EXASM M0DUL2/LE

EXIDY Z80 Assembler - version 2.1
Copyright (C) 1980 by EXIDY INC
pass 2 if. : ••••>, i;*s
MOOJL2 EXIDY Z80 ASSEMBLER V 2.1 PAGE

ADDR OBJECT ST # SOURCE STATEMENT

0001 NAME M0DUL2
3“ 00022 $>> global xxx: ;internal

>0000 lii 0003 XXX: in V' w

0000 211500' 0004 ' LD "
h fis 0005 tb;

>0003 0006 LOOP: ■1 $ (

0003 7E 0007 t;f : LD ; s
0004 B7 0008 <’ ^ OR v
0005 CA1400' 0009 JP ■
0008 5F 0010

0011
LD

0009 0E02 0012
0013

LD

000B E5 0014 PUSH
000C CD0500 0015

0016
CALL

000F El 0017 POP
0010 23 0018 INC
0011
>0014

C30300' 0019
0020 DONE:

JP

0014 C9 0021 RET
0015 0D0A 0022 MSG: DEFB
0017 54455354

494E47
0023 DEFM

001E 00 0024
0025

DEFB
END

- HL>MSG ?POINT HL REGISTER TO
H ?MESSAGE TEXT

A»(HL) 5GET A CHARACTER
A ? DONE?
Z »DONE ?YES» EXIT
E>A ?NO» PUT CHARACTER IN BDOS

5(REGISTER E)
C>2 {GET WRITE CONSOLE CHARACTER

?FUNCTION CODE
HL {SAVE HL
5 ’CALL CPM BDOS TO WRITE CHAR

{TO CONSOLE
HL ?BRING HL BACK
HL 5NEXT CHARACTER IN MESSAGE
LOOP ?CONTINUE FOR ALL BYTES

0DH#0AH {CARRIAGE RETURN/LINE FEED
'TESTING'

0

ERRORS=0000

WARNINGS=0000

A >EXLINK MODUL1»M0DUL2/A=0»E TEST»T 57
isJ*. 1..JQ0M Me AX3- A

EXIDY RELOCATING LINKING LOADER. l
OPYRIGHT <C) 1980 EXIDY INC, . VER2.-1 PC ’ •- A 0SS •''01 X3

STARTING OFFSET IS 0 .if- ' 7 r* s ;.•*>-< “to 0
c g,ji, q

~ ^ v u j -• ^ IJUGOM
*L MODULI •IT” *, . C3t i:j 30'A

BEG ADDR 0100 ; JljPO?
<r-.

END ADDR 010B . r ■*" v •• f « , ' •* . ,*• -i r,
UNDEF SYM 01 :yp.0 ? ^ .*• I

" -/-iq- / x x > *T,--;qn-' Sitin'

*L MODUL2 “ . y y .j.. *•’* :> r- S0x0'
Mi*

BEG ADDR 010C ‘ t «C: "■ ‘ n ; .5'
END ADDR 012A
UNDEF SYM 00

*T
SYMBOL TABLE (UNDEF=****) (.$ $s;£:0!- It.;AAi4

XXX 010C 3j . .iviOM Mc'*iX3 ' A

♦ETEST .,C „■ .• / •• . .-19 S A 0C i Y0I X2
. . X2 .-j t Sv I 1 . ' 7>iez

TEST.COM SAVEDt RECS WRITTEN* = 01 2: x 3
; vqr.v3 2J.COM

A>DJMP TEST.COM - •,, .ir.i-r * T J TCBl-ET' 3C;GA

1»COr .vf^. l f>\. ('

0000 CD 0C 01 CD 0C 01 CD 0C 01 C3 00 00 21 21. <01 7E
0010 B7 CA 20 01 5F 0E 02 E5 CD 05 00 El •23 C3 *0F 01 $$$.(; •
0020 C9 0D 0A 54 45 53 54.49 4E 47 00 00 00 0&400 00 '•00ci:2 0000 •
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00-00 00
0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3T ST-00 '
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 00 00 V? 40f0 •
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00100 'ft4-; A3 5000

' " «£» X. G.j (•’100 i~. 8000'
A>TEST a ? ') V

*. * J U-1 4. V V
r . , ,

£«B0 9000'

TESTING •A : ? J-i
‘ 2*

MK 53 9000'
TESTING . - : C 5 ? $ * 002000 300f’
TESTING f $
A> . JH i S \ ?A 13 -t c< f* §

Cv! I £ i ;‘:S

i " *- '•?' 3 XiJ CL ?; t- ' $f£'0S'J 1 ‘
r 3M0C • -

«T* r\ \ ^ .N * 93 4 10.« •
I r.n/.. ** L :a'- s~i:; A'OS 5100'

j f f.i 'X\ “T $ 42S22A4r T ♦ 4 '
a

K 9'-'32 & :* 2.4 y '
a<43

0000=5 flCfc-fr-S

58

, 7 k PART r- III: DEVCNVRT 0, ? .s

n 8 * /INTRODUCTION^ vt : : ~ a*-
t r -r* f ■ o.. ' c .* t i C-T ?■ r r> j i*n »::■

DEVCNVRT is a CP/M compatible utility program that converts
cassette files created by the Exidy Development-PAC into disk
files accessible to CP/M id eve'l o p merit systems. When the
DEVCNVRT program is invoked from CP/M, a filename and filetype
given on ‘the command line become the riame and type of the newly
created disk file. Then, a cassette containing a Development-
PAC file is read into the Sorcerer neither 7 under motor control,
or by manual control -of tape pauses. The pauses are necessary
to allow time for each file block read from cassette to be
written to dl/sifc?, //without passing over blocks on tape. After
all blocks have been read in, tlie program inserts a CP/M end of
file character (cntl-Z) where the Development-PAC's end of file

s;i: ciharacLtex _ ^cntrl-C) was >£?ound;, and closes the disk file. The
A : new disk diile icSari be/manipulated by =<5*P/M assemblers and linkers
r j.. such * as - EXASMr and EXLINK^ - Cassette files containing
H 3 Y /D E V E L G P M E-N T PAC assembly dource'Cfrdml the"’ Pac text editor ED)
T > /or -object code r(frowl £he~ :RA1C as"sem^Tier ' ASM) can be converted.

.11. „■ r i * i i, 5 :•t t r, w s ~ / • 8 ;1?. 3 c? A . H / >1 3 * 7
r £ £ t: " }. Q >, 7 ,rA - H " :> /. " , t> V- • C; =. / c I 1 - 7 ». 1 O 0

? or 1-4-ob CONVERTING A - RILE FROM CASSETTE TO DISK

* 7 7 To, iconviert De^elopment-PAG cassette file to a CP/M compatible

c. v> dis^k if lle^B fo 1/1 <xw zthe so s t e p avr :j ■ For ^cql arif ication, user input

is underlined.-) . si r; c - - r ^ *■:

: r : Afwtex:-Crieo :CP/MUA>e qp*roimp-t enter DRVCNVR-T in the command line,
v. : f o 11 owl n g 1£ wi t h a v :.s pac e .o: T hen type in the filename and

filetype, separating them with a period. This becomes the name
and filetype of the newly created disk file, as shown here:

A> DEVCNVRT FILENAME.ASM <Return>

If the filename and type are omitted, or if the filetype is not
•ASM .OBJ or HEX, an error message is displayed. Only assemby

b (^.ASM) or x>bjebt X .OBJ:, HE X)rxasse11e fi 1 es are supported.
b : n •> j. : »r *• a 5 n 1 b i/.! /. i b J . / i $ ** / -• :• v r .

After an acceptable filename and type-a re entered, the program
asks the user if he has cassette motor control. The user
responds by typing Y (for yes) xft Nr.(for no) , as seen here:

d o H4v:e cas^ e tte mo tor: con t rol (y / n) ? y

(Motor control requires the use of the Serial Cassette Data
Cable, DP 4005).

Then, a message is displayed, telling the user to rewind the
cassette. If: the uaer has motor ciontrol,'/ set the recorder to
play, hit any key and the file Is automatically converted
without manual control of the cassette recorder motor.

59

REWIND CASSETTE. WHEN READY TO PLAY * TAPE,' v HIT
ANY KEY.<any key>

If the user does not have motor control, having
only manual control, the following messages are
displayed,: vjiiJjn *-..d i 5 *. • - :-t 1 I V:

arjqz' sv?U a. . ■ : .. * 3 9ii -eaf.
MANUAL MOTOR ^CONTROL MUST BE USED. t ’id:

k .. h \ T:> cov t 1 f ; r \. Tr- ” ‘IVi...

STOP TAPE, RECORDER > (,Q;R PAUSE) IMMEDIATELY no « • Xg
WHEN THE STOP TAPE 1 b! ” MESSAGE .IS DISPLAYED_£ ro
TAPE MAY BE TURNED O.N AT LEISURE. WHEN , A']
"PLAY TAPE." .MESSAGE^APPEARS. . n lu-w •. c u

■ ; : i;-7 ‘ , .. "■ .c _■ ; i X acr. : li i .

REWIND CASSETTE.nl ;WHEN READY ^TO ELAY TAPE, t 4,;n«
HIT ANY KEY»<a;ny ,key> r . t -.si •; &»<? - arf > 3a i ; .

•. ..saq jli> -»0 .•isriw 'S-Jtn: * t.irio a.i'i
Rewind, foh-eoc ds;s.e q t e. vCa p e to 0 - the beg inning: =or f. the
file, and tfre v raesbsage "PL-AY- TAPE" , Its -displayed.
Start the: ' Bordet,.afte r .C,his Massage is displayed .
When "STOP TARfife!)! "soiss :<tis£iayed,,E THE CASSEIT.E:’.PSLAYER
MUST BE i . STO.B.BBD dQR sP AU-.SE Dj nIMME PI AT E LC' :U NT.IL ClHE: NEXT
"PLAY TAPE" PROMPT APPEARS. A few moments after the
cassette player is stopped, the "PLAY TAPE" message
should be displayed Ton the scrteen.L Ttile useCT doe-s not
need to respond immediately and may press the PLAY
button to, - s t:a c t, a i trh £ A ; t-a p e ca t .Iris CccmvarEierrca »oT The
start/stopi proraedur.e neis ca pa at ad; Jfio n e,aaihi :d iskiAt ape
block until the program is completed..byiii i isbrt ad

After the c ortv etr sdfocn - i s, :succas slu M yf Dz ompd etajd;,A the
console displayaMtha following message and rectjucns to
C P / M. , do. ' » c -i ri j .. « ss rf J c i „ r s r q f* a , bcv 5si xi
• * i 'i; tk b a 3 i.- ;• * o vi vf r. st,1: s.qvjsj : 1 oat

SUCCESSFUL DISK WRITE
'.. £« -M-. r . J ~ I 1 h ’ ’ . Z> 7ZU <.-.

15 EXAMPLE RUN : r j , 1 s r j :.vo fit a <; v; -&r.t stErs ' i * -i:1: 11
. :? i ygaac.SID “JCTIf r:a , Xl.-r VC ..SO,

The following axe ' exaample'syiff .coiLsola ly.Oitwhen usings the
DEVCNVRT conversion program. Underlined information is
entered by the .oisser .: b~r axtns i i ' * Ld »3qasr>£ n r is? 2

O C : i .1 fl i £ ..1 <■ .', F £ . r I ,'i V S o U r i. C 8 V f; (.

A>DEVCNVRT SAMPLE . ASM<-Re tuxatj> v, i ; gr i z v . ■, abnc«q.si

EXIDY CASSET.X-E TED D1SIC .'FIL"EIvTRA'NSFiRAiPRJDG'AAtMQ
FOR CASSETTES CREATED BY THE DEVELOPMENT-PAC.
VER. 1.0 c :?r 3 c c •> •• e r -•c er 1 cr ■: : r pj olv ;

. . . 0 0* (slHD
DO YOU HAVE CASSETTE MOTOR CONTROL (Y/N)?Y

a v ‘i ■ :■ % ■ .. 1 * ■ . j?;• j i t.. e v aT
REWIND CASSE-TTE-or . WHEN; <R£ADYj ;I:Q PrLAY TAPE'^I . : : a - fe £ .
HIT ANY KEY'..<amy - key>x 2 cnf, ■•£■;; vcs lid , vs »q

- r a ■?«:• a- v jsi «/. :* s- ■ J o i orjnen i raff .n civlv
SUCCESSFUL DISK WRITE

60

rs ' ft 3 r £• ? :• ? . , 1 3 it C A tf c

A>DEVCNVRT SAMPLE.ASM <Return>

EXIDY CASSETTE TO DISK FILE TRANSFER PROGRAM
FOR CASSETTES CREATED BY THE DEVETTOPHENT-PAC.

,V:ER .1.0 ;• * .. 1 l i 3 £ c! o " ,] •' *j i 5 s

DO YOU HAVE CASSETTE MOTOR CONTROL (Y/N)?N

MANUAL MOTOR CONTROL MUST BE USED*." ’ * *

STOP TAPE RECORDER (OR PAUSE) IMMEDIATeIy
WHEN THE "STOP TAPE!!!" MESSAGE IS. GIS P;L AY E D.
TAPE MAY BE TURNED ON IE I SURE, ,WHE:N : •" ,
"PLAY TAPE.” MESSAGE APPEARS,.., j i v =. i j>j,

' - ~ 3 !
REWIND CASSETTE. WHEN READY TO PLAY. TAPE,
HIT ANY KEY. <any key>

... s* i. c, c. r
PLAY TAPE • j
(or)
*** STOP TAPE!!!! *** x_i-3i:\z

SUCCESSFUL DISK WRITE • ■ j£ -

A> • s . . a ' r ,] a’-.i-r.

• < "i . y y
16 ERROR MESSAGES

If an error occurs, one of the following messages is displayed
describing the error. c:

FILE NAME NOT GIVEN, OR FILE TYPE
NOT "ASM", "HEX", OR "OBJ".

This error occurs if the 0EVCNVRT cpmpandjline does not contain
a filename and filetype after DEVCNVRT, or if the filetype is
not ASM, HEX, or OBJ.

DISK IS FULL, WRITE INCOMPLETE.

This error occurs if the CP/M diskette does not have enough
room for the new file. The incomplete disk file is closed, and
control returns to CP/M.

TAPE CRC ERROR <^ . ci

This error results if 8-bit CRC generated during the cassette
write operation does not agree with the~~CRC generated during
the read back operation. This error is usually the result of
an improper tone or volume setting on the tape recorder. Try
different volume and tone settings on your tape recorder.

61

> in</

■ :x7

APPENDIX A: EXASM Abstract Reference

*'*Cr* • ZZ .7

A. 1 EXASM c al llyCfb r%a*tw ~ ~ + - ^ • - - -
- J-~ TI7-TSV3(| IK 7 13 CIT-r^j 3 >

EXASM <sourcefile>[,<objectfile>] [,<printfile>] [/ <<^tlons >]

A.2 Options
i:u\y) jo>:tloo £c:;cim-y:. ~3 3-,4 ; oy oa

C - Generate cross-reference.
D - Listing to disk. *33?..’ 3 c Tc'JM *0r<h; JAUZAK

E - "Ecology” or compressed listing
F - Set form-f eed •opt^Lbn1. ' - 1 J) J- - - $' ^ -• 3 *•; A T 7 >
G - Suppress generated tfeetv-:*** -> ^ - c 3MT
K - No listing or 'b&frs vtcfe 7u Ci 3^ L: T 3E Yam vAAT
L - Listing to list de viceV^IAIi S iA 2 CAE-32# ".2$iT 7 /»J ^ ”

N - No object output.
0 - Object output .vAJY 01 YCAS* M3HV .S'ITEEcaO

S - No form feeds. sX2i* v w 1A 1 iH
T - List to console.
W - Don't print warnings. * 3 SivT 7 AG

A.3 Pseudo-op syntax

A.3.1 Data Generation

DEFB/DEFM/DB : <label> DEFB

<label> DEFW <expr>

* r * f f » ‘ 3 c uh; \)Tc ***

STJJIW X2IG YDGc^SOOTJE

n[,n,n...] •*

S20AE8HK 80 W 3 c A

■ onf. anz \n

<label> DEFS <expr>
—• ^r.iwciJo: s*I:5 io ano , <ioouo 7 c •. i e ir* :J

A.3.2 Source control
<label> IF nn

3 s y
END IF

,IY 80 ■«: 3VIC- T.

. ' *0° 5 r * XSF*
3 1A;> 3G 1 3

mM3Au1 TCVS

INCLUDE <fiiSMftgJ 5ri3 -- £’1JJC 3'"-^s * -*"5*
3 i zo , IjsVUDVtC 193 it nqvSsilli Lie snsas. .i e

Object control .UcO ' o ,X-iH , M2«

<label> PSECT <opr> . 2T3 Jt! ‘.CC 0j 3 7 7.3* t JJU1 El 2ZIZ

<label> ORG <Sxgr>i4r 3a;;■ *■
i * a j i, ic:; .

<label> END

<label> NAME <string> SQXX’6 0X1 A1

A. 3.3 L i s 11 ng c o ii t r 61 £ “ - •« •' ^ - c<
w -1 * ; * «.* *’ :-i £ *. • .3 r el ci C- ’ t . .• i1 T : Cj O

EJECT l- - sl.i-T .rr.;jt!*q- >**« L.. . . £= .3
- trcr; 3 ads .~c i ::.. Aio: vs^mal ns

TITLE ij9 ’ n ^ v r;«? « rr c ? bns a n tr I o ^ : c s * I i * t

v>- t*: ■ J £;•* ,-o^o i;:76 c. x nv
srIT . £ i 3 war; i o i ca r

* K \ \ 3 c 3 c n loi: r j c

J i? C i 1, J
a •: v

62

ar ■, 1 -Ja i j; 5 A X to I ' X 5

PAGE x

LIST -* ' '2 . ; x £; v

nlist . i \ ■ s:. i i : x: ;; <; *

A.3.3cl LIST :and NiLIS.T .with operandsfco*5tions :

. . , G — Don ',-.t print . fce?x.t. d , i v -.-ssii'
;■ i«. i

W - Don't print warnings,* ^ r; ^ a i

E
i» =•» r. *: b so1 i ns v i £ (:*
"Ecology" (suppression

*. f J (TV r •- *f» * j. 8 £.
Examples:

LIST GW --
NLIST GW ;

u t -»rr o r s» > r s

o
8 r:

of form feeds

>' ft. r j* •' i • ;:-

<i $ *2 i> £ ^

and ejects) .

A. 3.4 Symbol control a r: c v. q C t bc!* v

XIabe 1> EQU ; * <expr> d } yq q)

/ v - < :X;label> DEFL ■ , *:; <expr> ■ *
, "• ' \ !*. % .3 j . f *! • t

A. 3.5: Linking: Control 2 ; : J a

<label> GLOBAL <symboI> . : ij

These three may be used in place of the GLOBAL pseudo—op t

specify an .external global symbol:

• external* extern, ext

These four may be used in place of the GLOBAL pseudo-op t

specify an internal global symbol:

INTERNALi INTERN, INT,? PUBLIC

You may use any of the forms interchangeably.

63

APPENDIX B: EXLINK Abstract Reference

A. 1 EXLINK call format ;j

EXLINK [<filel>][,<file2>][,<file3>]...[/options]

B. 2 Offset for fk£a d inffi sfffif'&t * jnyg'dfli le Ij&e#e rmine d hy. , Siunk of:

A=XXXX where XXXX is the at£sfa?l£irfg; —o^;f£se*t fro~m call option
list

ORG YYYY (given in source Mo^l^) :n*:q : ’ n ; u -
ZZZZ (offset number) given in load command

2; 1 C J * c no] fe. oi;Kqu3 ;• '■ Vg,'. j ODZ " - Z

B=3 Offset for loading subsequent modules is determined by:

ORG YYYY (given in source module)
ZZZZ (offset address on command line>'C TLi^
Default: End address of previous module^4? ££'J%

B.4 Interactive Mode Options ioiscco 1cdxtrj - . C • A

L [d :] <f i lename> [ZZZZ] Relocates at 6'<p£lo'iial i$>t a r t ing
offset ZZZZ.

T Prfilt ;$*G>urrea£i3#laba&}3 Symbol table .
E Writes .COM file to drive d:.
Q Exits wi t hrittS 3woi)t fenrg i^C.QM file,*

B.5 Batch Mode Options <loc& GJT; <'j£*ri.rl>

A=XXXX
E

T

.1 *jsmcx r i z t pu c v j. r. -> -j:: * 3gq

’ loaddt &vcd ev*ri&tas> ai le to
disk.

"XI prints 5 glbhi'iT/symbol table, after
loading modules

- -1 £ ^ f'-■ q * it bp. u s»d y • *» i.‘ o :i 3 g* £ **(
* c m Y I.* «. i Co*- i * *t u w j: ^ j i o s q &

APPENDIX C: DE\/@ftVRT - Xbs t ifacJ t ^Ref ef-iAce.

C.I DEVCNVRT call' formdC arioi &.i: o «;<•£ &? j vr.ci uoY

DEVCNVRT FILENAME.ASM

i

I

